
Welcome to the

ProvideX Web Server Reference …

Introduction
The ProvideX Web Server Reference contains technical information to help you set up and use the
ProvideX Web Server. The reference is intended primarily as a resource for application programmers and
analysts. It’s designed to help you with your ProvideX Web Server’s installation, configuration and
associated web-based internet programming. Please note that ProvideX Web Server version 1.2 must be
used with ProvideX 4.12C or higher.

Before you begin, you'll find it helpful to familiarize yourself with the Glossary and list of descriptive
Conventions, next.
1 The ProvideX Web Server Reference, 10/10/01 1

Glossary of Common Terms

Glossary

The chart below lists some of the naming conventions used in The ProvideX Web Server Reference. In
addition, common internet acronyms are expanded to their full terms. See any standard browser manual
for detailed definitions of internet acronyms.

The word application in this manual is a literal term meaning use/usage. An application can be as simple
as a function, a few lines of code, or a subroutine controlling a process (e.g. creating a web page) in a
single program, or it can be a complex series of programs (e.g. a lead program with subprograms, a full
web site, the Web Server).

Term/Acronym In this manual:

base launcher is the basic ProvideX Web Server launcher or engine. It’s responsible for reading
the configuration and launching the individual web servers (port monitors).

CGI Common Gateway Interface

client/browser is a browser or query engine sending a request for information or tasks.

cookie is a variable=data pair you can use to transfer status and tracking information from
one page to another.

DNS Domain Name Server

FTP File Transfer Protocol

GMT Greenwich Mean Time

HTML HyperText Markup Language

HTTP HyperText Transfer Protocol

IP Internet Protocol

task handler is our ProvideX Web Server application that processes requests from the port
monitor and returns completed results to the port monitor. (Task handlers are also
referred to as subservers.) See Task Handlers, p. 6.

port monitor is an individual web server that monitors a given port or TCP/IP socket. The terms
"port monitor", "web server" and "server" are sometimes used interchangeably in
this manual and in the ProvideX Web Server dialogue box prompts on-screen.
See Port Monitors, p. 6.

SMTP Simple Mail Transfer Protocol

TCP/IP Transmission Control Protocol/Internet Protocol

TCP/IP Socket is the number you assign to the port or socket. The typical default socket for a web
server number is 80. Each port monitor must have a unique socket or port number.

URL Uniform Resource Location request. Use standard URL coding conventions for
requests to the Web Server. Requests to run ProvideX programs follow standard
CGI coding conventions.

Web Server case-sensitive, mixed case is our ProvideX Web Server application. Any other
usage (case insensitive) is a port monitor. The terms "port monitor", "web server"
and "server" are sometimes used interchangeably in this manual and in the Web
Server dialogue boxes on-screen.
2 The ProvideX Web Server Reference, 10/10/01 2

Conventions
Symbols in Use

Format Conventions

The following conventions have been applied to the Format for each directive in The ProvideX Web Server
Reference:

Punctuation/Syntax Conventions

If you’re new to ProvideX, here are some of the punctuation conventions you’ll see in the syntax in this
manual:

Symbol(s) Meaning

[] Square brackets enclose optional elements in the syntax format. For example, with
the special HTML code format ~~argument[?suffix]~~ you can use either an
argument with a suffix (e.g., ~~Total?F:####0.00~~), or just an argument (e.g.,
~~Total~~).

{ } Curly brackets enclose a list of elements where you must select one item. For
example, with {yes|no}, you must select either yes or no.

 | Vertical bars | pipes are used to separate a series of possible values, as in
{yes|no}.

... Dots indicate the continuation of a list of elements.

Symbol(s) Meaning

!
(exclation
mark)

Use the exclamation mark in the ProvideX language to begin a programmer’s remark.
It’s syntactically the same as using a REMark directive. For example,

! This is a remark.
REM This is a remark, too.

" ... "
(double
quotes)

Use double quotes to enclose string literals in your ProvideX programs. Double
quotes are not used in URL syntax. For instance, ?stringvar=abc in your URL is
the equivalent of stringvar$="abc" in your ProvideX code.

#!
(pound sign +
exclamation)

an ASCII CGI program starts with the pound sign plus exclamation mark. Use the
mime type application/providex for ASCII ProvideX programs. CGI programs
(other than ProvideX programs) are not currently supported.

%
(percent sign)

A leading %percent sign in your ProvideX program denotes a global variable, as in
the Web Server system variables %exit_code and %print_fn.

A leading %percent sign is also used in Web Server syntax as a prefix for characters
that are invalid in HTML but still needed in your transmission to the browser. (Send
them as their HTA value, prefixed by the %sign.)

&
(ampersand)

Use the ampersand as the separator between arguments in a URL statement. For
example:

 http://server/myapp/myprog?stringvar=abc&nextvar&a_var

*
(asterisk)

When you include the leading asterisk, as in *web, ProvideX will prefix your program
name with the full pathname to the ProvideX lib directory automatically and will
change the asterisks to underscores. For example, *web/merge would become
something like g:\software\pvx\lib_web\merge.

You can also use asterisks in the ProvideX language to enclose specialty file names
like *MEMORY* and as operators (e.g. in multiplying value*1.05 and in ’C’-type
operators, etc.).
3 The ProvideX Web Server Reference, 10/10/01 3

+
(plus sign)

Use the plus sign in your URLs to encode spaces on the data side of a variable=data
pair or spaces between arguments on the variable side (no equals sign). For
example:

http://www.pvx.com/makewish;init?this+that&what=dog+cat+pig

(Plus signs in your ProvideX language syntax have the usual conventional meanings,
i.e. as addition operators, etc.)

:
(colon)

Use the trailing colon to denote the end of a line label in your ProvideX program. An
entrypoint in your URL such as yourprog;entrylabel refers to the
ENTRYLABEL: line label in your program where the task handler would start
executing your web application.

;
(semi-colon)

Use the semicolon in an URL to indicate an entrypoint in a program (i.e., a line label
where execution should start). For example:

call "yourprog;start_here",this_arg,that_arg
http://server/makewish;init?this+that&what=dog+cat

<...>
(greater and
less than)

Use greater and less than symbols as brackets to enclose special HTML attributes or
object tags. As an example, in a ProvideX program:

0020 PRINT (%PRINT_FN)"<html><head>"

?
(question
mark)

Use a leading question mark to denote the start of an argument list in your URL :

http://myapp/mypvxprog?myvar&stringvar=abc&anothervar

You also use a question mark to denote the start of a suffix in a Web Server specialty
code in HTML pages. For example:

~~Total?F:####0.00~~
~~myprog;filltable?T~~

In conventional ProvideX syntax, a question mark is the same as a PRINT directive.
For example, you can use either:

? (%PRINT_FN)"<html><head>" or
PRINT (%PRINT_FN)"<html><head>"

~~ ... ~~
(enclosed by
double tildes)

Use double tildes to enclose Web Server specialty codes in HTML template pages.
For example:

~~myprog;filltable?T~~

Symbol(s) Meaning
4 The ProvideX Web Server Reference, 10/10/01 4

General Information

General Information

Description

The ProvideX Web Server is HTTP/1.0 compliant. It lets you integrate your HTML and your ProvideX
programs in your web applications. The ProvideX Web Server’s coding standards for an HTML web page,
for running a ProvideX program and passing it data follow standard CGI conventions. You can create
HTML using ProvideX and/or using your favourite HTML editor (e.g. Microsoft Word, Frontpage, etc.)

You can use the ProvideX Web Server as your only web server or you can use it to augment your existing
web server. For instance, you can use APACHE, Microsoft-IIS or Netscape to serve your main site and
use the ProvideX Web Server to run your ProvideX web applications and create web pages to gain access
to your data.

Applications
You can use the ProvideX Web Server to:

• integrate your ProvideX programs directly with standard Web Server operations
• gain direct access to ProvideX data files, ODBC data files and other ProvideX file structures for

use in your web applications (i.e. your ProvideX programs)
• use almost any ProvideX programming feature in your web application
• give your users access to your web applications without the time delay of launching a CGI

application. (The Web Server accepts and runs CGI-compliant URLs as ProvideX programs.)
• perform high volume simultaneous request processing (as many as 1,000 at a time) and

automatic restarting of stopped/stalled requests
• reconfigure your web server on-the-fly

You can transfer files of any size and any type with the Web Server. There is no delay before the file
transfer begins. You can also force the browser to Save As the file name you specify for display to the
user. Transferring files of any size has no effect on Memory requirements. (No additional RAM is used).
5 The ProvideX Web Server Reference, 10/10/01 5

Components of the Web Server
Components

Description:

Our ProvideX Web Server consists of the Web Server Configuration application and three operating
components, described below:

See also To Edit Configuration Details, p. 12

• monitoring a specific TCP socket (port), waiting for HTTP requests from browsers,
• checking the validity and security of incoming requests,
• delegating tasks to task handlers,
• checking for stalled jobs,
• cancelling stalled tasks that have timed out
• returning data from the task handlers to the browser (following the rules outlined in the HTTP

Specification 1.0, RFC 1945).

You can have all of your task handlers active simultaneously (as many as you’ve licenced, potentially
working simultaneously for one given port monitor). That is, a given port monitor can use as many task
handlers as are necessary and idle/available, up to your licenced maximum. If there are no idle task
handlers available when a request is received from a browser, then the Web Server queues the requests
until task handlers are available or until the browser disconnects.

NOTE: The Web Server uses less than 1.5 MB of RAM for each instance under UNIX and
approximately 2.5 MB of RAM under Windows. Each task handler runs an instance of
the ProvideX interpreter. If your ProvideX Web Server engine is handling 1,000
simultaneous browser requests, it’s using concomitant task handlers and memory.

You can send long jobs if they respond periodically. However, your ProvideX application must be
completed before the port monitor can send any data to the browser since the header must contain
information about mime types and the length of the job, etc. The ProvideX Web Server will not currently

The Base Launcher (The Web Server Application)
Our ProvideX Web Server runs using one base launcher application (as a background task). This is the
engine that launches your individual web servers (port monitors) and tracks their configuration and activity.

Port Monitors
Port monitors are individual web servers, each responsible for monitoring a unique TCP socket number.
You can configure up to 100 port monitors per Web Server base launcher. Your port monitors share the
use of your licenced task handlers, but any given port monitor can use as many task handlers as you have
licenced and idle/available (up to 1000 simultaneously).

 A port monitor’s tasks include:

Task Handlers
The task handler is our application that processes requests coming in through port monitors. Task
handlers control processing by finding the requested files/pages or running your ProvideX program(s) and
returning the resulting data to the port monitor when tasks are completed. We allow you to licence up to a
maximum of 1,000 ProvideX Web Server task handlers.

About Timeouts
Port monitors check, approximately every 30 seconds, for stalled jobs. Task handlers are given at least 90
seconds to complete their tasks and return the data to the port monitor.
6 The ProvideX Web Server Reference, 10/10/01 6

send any response to the browser until job processing is complete. Browsers also have a timeout, typically
about 60 seconds, for a response from the server.

If your Restart Stalled Tasks setting is ON (see configuring the PVX Web and Debug Mode, p. 15), the
port monitor terminates stalled task handlers by the timeout and starts a new task handler in its place.

NOTE: If the port monitor terminates a stalled task, it will inform the browser that the page
requested was not available.

NOTE: When your application is completed and control returns to the Web Server, the Web
Server CLOSEs all the file channels (local and global) that you OPENed in your
ProvideX program(s). It does not close any of its own files then, nor does it close any
files that you OPENed in your START_UP. This allows you to OPEN common files in
your START_UP program so that they are always available to any Providex program
your Web Server runs.

Your Environment
The Web Server takes a snapshot of your ProvideX environment before it begins processing. You can
create a START_UP program in the lib/_web directory and set global variables, system parameters,
message libraries, PRECISION settings, global variables and globally OPENed files. When the Web
Server is about to RUN your ProvideX program, it will use your settings for each task handler it launches.
This gives you your own program environment and behaviour but doesn’t affect the Web Server or task
handlers themselves.
7 The ProvideX Web Server Reference, 10/10/01 7

To Set Up the ProvideX Web Server

Setup

Environment

Your operating system must be 32-bit compatible. Then, as a prerequisite to installing the ProvideX Web
Server 1.2, make sure that ProvideX 4.12C (minimum version number) is installed.

You can install the ProvideX Web Server in the following environments:

• Windows 95
• Windows 98
• Windows 2000
• Windows NT
• all UNIX systems

Installation Notes
In Windows, use a semi-colon to remark out the Library= line in your \windows\pvx.ini or
winnt\pvx.ini file until after the Web Server is installed or activated. The software comes in two forms,
one an add-on and the other packaged with ProvideX. After you’ve installed the Web Server, you can
create your icons, as described below.

In UNIX, the Web Server comes as a .taz file (compressed .tar format). The installation has 3 shell scripts:

runconfig (runs the Web Server Configuration)
runserver (starts the Web Server in background)
stopserver (stops the Web Server)

To install it, log in as root, create and change to your pvxweb directory, rename the .taz to your_name.tar.Z
and uncompress it. Then, extract the files, activate the Web Server by running pvxactv using the
standard ProvideX activation methods. Use the full pathname for the pvxactv program (e.g. /usr/
pvxweb/pvxactv).

Example:

mkdir /pvxweb
cd /pvxweb
umask 0
mv xxxxx.taz xxxxx.tar.Z
uncompress xxxxx.tar.Z
tar xvf xxxxx.tar
8 The ProvideX Web Server Reference, 10/10/01 8

For Windows Installations, Create Two Icons

For Automatic Startup

• In Windows, you can add the ProvideX Web Server to your Startup Group so that the your port
monitors will start automatically when your system boots.

• In UNIX, you can add an entry to /etc/inittab to run the base launcher when the UNIX box
boots. Use an entry like:
pweb:234:once:/usr/pvxweb/runserver or
pvxw:234:respawn:/pvx/pvx *web/webserv </dev/null >/dev/null 2>&1

Note that if you use once: the init daemon will only spawn the task once and if you execute the
stopserver script, then the init daemon will not restart the task unless you use runserver. If you
use respawn, stopserver will stop the Web Server processes, but the init daemon will immediately
relaunch.

Change Icons

The <path-to-your-pvx> \lib_web\webserv.dll contains the icons for the Web Server.

Icon Icon Set-Up / Format

1 Name: ProvideX Web Server
Command Line: your path\pvx\pvxwin32.exe webhide.ini *web\webserv
Start In: your path\pvx\lib_web
Run: Minimized

NOTE: Your webhide.ini file is designated as READ ONLY.

Description:

This application is the basic ProvideX Web Server launcher or engine. It’s responsible for
reading the configuration and launching the individual port monitors.

2 Name: ProvideX Web Server Configuration
Command Line: your path\pvx\pvxwin32.exe webcfg.ini *web\webcfg
Start In: your path\pvx\lib_web
Run: Minimized

Description:

This application allows you to create or change port monitors and their configurations
dynamically.
9 The ProvideX Web Server Reference, 10/10/01 9

To Configure the Web Server

Overview

Web Server Configuration Icon

For a Web Server installed in a Windows environment, select the Configuration icon to view the Status/
Configuration list. This displays the status of your base launcher (e.g. Stopped/Running) and any port
monitors you have set up.

For a Web Servr installed in a UNIX environment, you must use WindX (installed on your PC) to configure
the Web Server. That is, you must gain access to the UNIX box through WindX, then change to the
providex directory and run the runconfig script.

NOTE: The Web Server Configuration application is a ProvideX NOMADS application which
runs only in Windows. Some features are restricted to Windows. For instance,
Debug mode is only for Windows (not accessible in UNIX through WindX).

You can create and/or modify your individual port monitor’s configuration by clicking on the following
buttons in the Status/Configuration window:

Button Purpose: Status/Configuration

Edit Jumps to the Details Configuration dialogue, where you can set up:

• Server Basics (i.e. port monitor basics)
• Port Style
• Task Handlers

In addition, buttons in Details Configuration allow you to jump to dialogues for:

• Virtual directories
• Hit counter lists
• (Templates will be available in a future version.)
• SMTP values (i.e. simple mail protocols and settings)
• PVX Web and Debug Mode
• Statistics

See To Edit Configuration Details, p. 12 for more information.

Mime Jumps to the Mime Configuration dialogue (a listing of available mime types for file
extensions such as jpeg, zip, dll, bin). You can add, edit or remove mime
types.

See Mime Configuration, p. 17.

Logging (Logging will be available in a future version.)

Templates (Templates will be available in a future version.)
10 The ProvideX Web Server Reference, 10/10/01 10

NOTE You don’t have to shut down or restart a port monitor when you change its
configuration. The Web Server will dynamically update itself.

Admin Jumps to the Administrator Configuration listing of time zones. Make sure you select
the local time zone that’s appropriate for your application.

Important: All web documents use GMT (Greenwich Mean Time). The
ProvideX Web Server converts times automatically for you
(offsetting your selected local time zone from GMT). The wrong
setting here can have adverse effects on your results (e.g. when
you send or receive data, cookies, etc., that rely on date-time
information such as expiry times).

You can toggle check boxes on this screen to ON to hide the Web Server and your port
monitors (so that they don’t appear on your task bar) and to tell ProvideX to shut down
all port monitors when the Base Launcher is Stopped.

Status Control
The Web Server refreshes the Status/Configuration list every 5 seconds, returning the current status of
your base launcher and your configured port monitors. The base launcher is suspended from overseeing
the port monitors while the Configuration application is running. (The Configuration application takes
responsibility for dynamic changes to the various port monitors.)

You can use the Start/Stop toggle button at any time for any port monitor or the base launcher.

Menu Bar: About WebServer
The Status/Configuration menu bar offers you many of the above selections, as well as a Help>About
option, which jumps to the About WebServer screen. This screen displays your WebServer version and
O/S information and also provides active links so that you can jump to our Support site and/or to the
ProvideX Web Site.

Button Purpose: Status/Configuration
11 The ProvideX Web Server Reference, 10/10/01 11

To Edit Configuration Details
Dialogue Box The EDIT Button

Description:

When you click on the Edit Button in the Web Server Status/Configuration display, the Details
Configuration dialogue box appears. The prompts and setup information are listed in the charts in the
following sections for the three main areas of this dialogue box:

• Server Basics (i.e. port monitor basics)
• Port Style
• Task Handlers

You can create up to 100 port monitors (each with a different "root" directory, if desired). Each port monitor
must oversee a different, unique TCP/IP port (socket number).

Server Basics Configuration

Prompt Server Basics Web Server Details Configuration

Server Your server name can be up to 14 characters long and is case-sensitive. The
server name is solely for your reference. Example: Test Server

Description We recommend using your site name, e.g. www.mydomain.com. This description
is used for Directory Browsing if the browser does not send a host_name.

TCP Socket This is the TCP/IP socket number you want this port monitor to oversee. Don’t use
a duplicate of one that’s in use by other applications.

Web servers typically default to port 80. You can override the default with any valid
TCP socket number. For example, you can use 4000 as your port number to
resolve a potential conflict with Apache, which defaults to port 80. (Valid range: 1 to
65535. Ports below 2000 are normally reserved for standard Internet applications
like FTP, mail services.)

Default Root Dir The Web Server will treat this as the "root" directory for a given port monitor and will
restrict clients’ access to files in this "root" directory and its subdirectories. For
example: \pvx410\direxions\web\webroot.

If you make use of Virtual Directories, then the Default Root Directory will be used if
either the browser does not send the HOST NAME typed in by the user or if you
don’t have a directory set up for the specific HOST NAME in your Virtual Directory
Mapping. See Details Configuration Buttons, p. 14.

Default Doc You can declare one or more default document names, e.g., home.htm.

When the client requests a Directory:

If you have declared default documents, then the Web Server responds to a
browser’s Directory request with the first of your listed default documents that exists
in the directory. The Web Server scans the directory for default documents in the
order in which they appear on your list.

If you don’t declare default document names (or none of the documents exist) then
the Web Server responds to a browser’s Directory request in one of two possible
ways:

• If Directory Browsing is ON the Web Server returns a directory listing
• If Directory Browsing is OFF the Web Server returns an Error 403

Forbidden. (See Port Style Configuration, p. 13.)
12 The ProvideX Web Server Reference, 10/10/01 12

Port Style Configuration

Task Handlers Configuration

Hit Counter Hit counters track how many times a specific URL on your site has been sent to a
browser. Radio buttons give you three Hit Counter options:

• Off: No hit count is tracked.
• Specified List: Web Server only tracks the web pages or URLs you list in the

Hit Counter dialogue. (Click on the Hit Counter button to jump to the
dialogue and create, modify or reset your list.)

• Automatic: Web Server tracks all pages hit (whether or not they are in the hit
list already).

The Web Server returns the current hit count to you in the global system variable
%hit_counter, p. 30. The count is based on the URL of your ProvideX application.

Prompt Port Style Web Server Details Configuration

Deny Start ON: The port monitor cannot be started. If the port monitor is already running
when you toggle this ON, it will continue to run until you stop it. Then it can’t be re-
started.

OFF: The base launcher will automatically start the port monitor or you can
manually start it.

Server Enabled OFF: Your port monitor returns a Server Busy message to any browser making
a request. (The port monitor will still accept administration commands.)

ON: The port monitor is available to serve incoming requests from clients.

Secure [HTTPS] Available in a future version.

Directory
Browsing

ON: When the user requests a directory listing, the Web Server returns a directory
listing page.

Exception: If you assigned a value in Default Doc, p. 12 (in Server Basics
configuration, above) and that page exists in the directory
requested, then the default document is returned instead of the
directory listing.

OFF: If you toggle this OFF and you haven’t assigned a Default Document (or the
default document doesn’t exist) the Web Server returns an Error 403
Forbidden to the client.

Prompt Task Handlers Web Server Details Configuration

Max Idle Time (mins) In minutes. If your port monitor is idle for the given number of minutes, the
Web Server shuts down extra task handlers to the minimum number you set,
below). Use value=0 (zero minutes) to prevent the shutdown of your extra
task handlers.

Min Task Handlers This is the minimum number of task handlers you want your given port
monitor to launch automatically, e.g. 0 (zero is a valid value for minimum).

Max Task Handlers This is the maximum number of task handlers you want your given port
monitor to launch, e.g. 5. The valid range is 1 to your total licenced number
of task handlers (maximum 1,000). The Web Server can process many
simultaneous incoming requests by passing the requests on to available task
handlers for processing.

Reminder: Each task handler requires an instance of Providex.
Watch your memory requirements.

Prompt Server Basics Web Server Details Configuration
13 The ProvideX Web Server Reference, 10/10/01 13

Details Configuration Buttons

Button Purpose: Details Configuration

Virtual Dirs Jumps to Virtual Directories mapping, where you can update, delete or display the
virtual directory names you’re using as your logical host names. You can map incoming
requests by their declared host name to different directories on your hard drive. For
example, with a port monitor listening to TCP port 80:

Default Root Dir: c:\inetpub\pvxweb
Host Name: www.pvx.com and Root Directory: c:\inetpub\pvxweb
Host Name: www.edias.com and Root Directory: c:\inetpub\edias

If a request doesn’t include a host name, the Web Server will use the default root
directory. Also, Web Server will change to the correct root directory before RUNning a
ProvideX program.

Hit Counters Jumps to the Hit Counter Configuration dialogue, which lists the number of hits and
the date/time of the last hit for a given web page or URL. You can add, remove and
reset items in the hit counter list.

Templates (Templates will be available in a future version.)

SMTP Jumps to SMTP Configuration where you can maintain the settings you want to use
with ProvideX e-mail tools. If you assign a value for SMTP Server name, it’s available
to your applications in a variable named %SMTP_gateway$, p. 31. If you assign an
SMTP Port number, it’s available to your applications in a variable named
%SMTP_socket, p. 31.

Debug Jumps to PVX Web and Debug Mode configuration. (See Troubleshooting, p. 15).

Statistics Jumps to WebServer Statistics which displays port monitor configuration details and
statistics, including:

• Server name, socket number and state (e.g. Stopped)
• Status (e.g. Old Statistics from Thu, 14 Oct 1999 12:24:54)
• Min and Max task handler settings, how many used and currently running
• Number of requests served, maximum number and time in the queue.

Remove Use this button to Remove a server (port monitor) from your Web Server configuration.
14 The ProvideX Web Server Reference, 10/10/01 14

Troubleshooting
Debug Mode

Description:

Configure your troubleshooting settings in the PVX Web and Debug Mode screen, reached via the Details
Configuration dialogue. You can use the Restart Stalled Tasks setting in conjunction with debug mode and
debug windows to test and debug your code.

NOTE: Debug mode and the debug windows are not available in UNIX.

ALSO: The Web Server automatically sets the ’NE’ system parameter to OFF when each of
your jobs is completed. With ’NE’ set to OFF, the Web Server can return values in
such system variables and functions as ERR, RET, and MSG(-1) to report
untrapped errors in your code.

NOTE: When you receive a message that the Web Server is unable to gain access to a TCP
port, that usually indicates that another application has the TCP port open or the O/S
has the socket in a WAIT state, pending the clearing of unclaimed data in the socket.

For more information on error handling, see the PVX Web and Debug Mode chart, next. See also
%exit_code, p. 30 and Base64 Error Messages, p. 35.

PVX Web and Debug Mode

Error Conditions
There are two types of error conditions in dealing with the Web Server:

Type Description

Hard Errors Unrecoverable conditions. These are reported to the console. The specific port
monitor exits. The base launcher automatically restarts any failed port monitor within
30 seconds of its going down.

Soft Errors Recoverable conditions. These errors are reported to the browser sending the request
that generated the error.

Prompt PVX Web and Debug Mode Web Server Details Configuration

Restart
Stalled Tasks

ON: The port monitor checks for stalled task handlers approximately every 30
seconds and

• terminates a task handler that has been running longer than 90 seconds
and is stalled due to an error or ESCAPE directive and

• starts a new task handler in its place.

Long jobs are acceptable if they respond periodically.

OFF: If you include a PRINT ’SHOW’(1),;ESCAPE directive in your ProvideX
program, control will transfer to the task handler and processing will stop at your
ESCAPE. This gives you an opportunity to check your variables and debug the
program if necessary.

This setting should be OFF when you’re debugging a ProvideX program. (Then,
task handlers are not monitored or restarted, so the Web Server won’t kill your task
in the middle of debugging.) If your Web Server is running on an NT server, jobs
will appear on the console.
15 The ProvideX Web Server Reference, 10/10/01 15

Debug Mode ON: The Web Server displays any ProvideX debug windows you’ve selected just
before your ProvideX application runs. The task handler will automatically stop on
the first line of your code so that you can debug the program if necessary. (No
ESCAPE is necessary in your code.)

After your task handler exits, only the Trace and Watch windows remain open. Any
other debug windows you selected are closed automatically.

NOTE: Debug mode is not available when you run the Web Server in a
UNIX environment (not even if you use WindX).

Trace Window
Watch Values
BreakPoints
Command Mode

NOTE: These settings are only available when Debug Mode is set ON.
They are not available in UNIX (not even if you use WindX).

When you turn ON your setting(s) for Trace Window, Watch Values, BreakPoints or
Command Mode, the Web Server will turn on the given debugging window(s)
automatically for debug mode.

Prompt PVX Web and Debug Mode Web Server Details Configuration
16 The ProvideX Web Server Reference, 10/10/01 16

Mime Configuration
Dialogue To Set Up Mime Types

Description:

When you click on the Mime Button in the Web Server Status/Configuration display, the Mime
Configuration scroll box appears. You can add, edit or remove mime types. Note that mime_type values
are always in lowercase. A few of the more common types and defaults are listed below. All types in the
text/ classification automatically have their end of line characters converted to $0D0A$ (carriage return,
line feed).

You’ll find more information on other mime types in Windows Explorer under View>Folder Options>File
Types Tab.

• a directory,
• a ProvideX program in tokenized form
• an ASCII CGI program, starting with the #! symbols (not supported by the Web Server at

present).

If the file fits none of the above categories, then the Web Server matches the file extension to the mime
type to determine file type and control the transmission.

NOTE: If your browser fails to display or download data from the Web Server, check to make
sure that the file’s corresponding mime type is properly set up. For example, a
browser can’t receive and display a jpeg image unless the file includes the jpeg file
extension which is mapped to the mime type "image/jpeg" in your Mime
Configuration dialogue list.

Mime Type

text/plain is the default for data files and web pages: text is the general classification and
plain is the specific mime type.

The mime type for README and .INI files is text/plain.

text/html is the default for ProvideX programs: use text as the general classification and
html as the specific mime type. Exception: see providex, below.

providex Use the mime type application/providex for ASCII ProvideX programs.

octet-stream The mime type for plain binary is "application/octet-stream".

pdf The mime type for general binary transfer is "application/pdf". The web
browser launches the PDF viewer to handle the file once it is received. If there is
no viewer, then the file goes through the "Save As" dialogue in the browser.

Serving Simple Mime Type Requests
The ProvideX Web Server opens the requested file in binary mode and tries to make a determination of the
file contents before it attempts to match the file extension to a mime type. First it checks to see if the file is:
17 The ProvideX Web Server Reference, 10/10/01 17

Client/Browser Requests

Valid Requests and Methods

Description:

The ProvideX Web Server addresses two forms of browser requests:
• requests to return file contents (e.g. web pages, data) or
• requests to RUN your ProvideX programs to process data.

Requests contain a header block terminated by a blank line and can also (optionally) contain a data block
known as the body. Each line of information sent to or from a web server or browser ends in a CRLF
terminator (i.e. carriage return plus line feed: $0D0A$).

See also URL Request to GET a File, p. 19

URL Request to Run a ProvideX Program, p. 22

*web/merge To Merge Dynamic Data with HTML Templates, p. 39

DireXions Examples (Appendix), p. 47

Request Methods

There are three methods or types of requests:

The main difference between the GET and POST methods is in the amount of information you want to
pass in the request. Use the GET method for simple URL requests. There is a limit of about 100
characters when you’re passing parameters (arguments, variables, etc.) in your URL request.

If you want to pass large amounts of information, use the POST method instead. Use the POST method,
in your HTML pages. For example, in Orders Web Page 1: login.htm, p. 52:

 <td><form method="POST" action="/orders/webord;logon">

GET /mypage.htm HTTP/1.1
Accept: application/vnd.ms-excel, application/msword, applciation/vnd.ms-
powerpoint, image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, */*
Accept-Language: en-us
Accept-Encoding: gzip, deflate
User-Agent: Mozilla/4.0 (compatible; MSIE 5.0b2; Windows 98)
Host: 127.0.0.1
Connection: Keep-Alive

This next example is a URL request to GET a file: http://www.pvx.com:3000/support/home.htm

Method Description

GET is the most common method. It’s typically used for files and small CGI requests. It
contains the name of the file being requested and (optionally) can include command
line arguments or a short variable list. There is no body information, just a header. The
size limit is typically about 100 characters.

POST is typically used for data from forms or for large CGI requests. POSTS can contain
body information in addition to the header block. Parameters (command line
arguments, variables) are relegated to the body of the request.

HEAD is typically used by a browser or URL validator to check the validity of a request without
receiving data. HEAD requests are handled like GET requests, except that only the
HTTP Header will be returned. No HTTP Body is actually sent.

Examples
The first example illustrates the GET method in a file request from MS Internet Explorer 5 (IE5):
18 The ProvideX Web Server Reference, 10/10/01 18

URL Request to GET a File
Request to GET a File

Format

URL Request protocol://server[:socket]/filename.ext[?argument[&argument...]]

Description:

The Web Server uses the information in your URL statements to locate the file or information being
requested. Each object on a page is a separate request from a browser to a web server. The ProvideX

Where:

protocol is the applicable network protocol, for example: http:// or ftp://

server is the server name. Use an IP (internet protocol) address like 127.0.0.1 or a DNS
(domain name) like www.pvx.com

socket is an optional TCP socket or port number (an integer preceded by a colon). Valid range:
1 to 65535.

By default, all requests from a client are sent to TCP socket 80, unless you override the
port number in your URL statement. To do this in any HTTP-compliant browser, include a
colon and the port number right after the server name. For instance, the first URL below
would default to TCP socket 80. The second would connect with TCP socket 3000.

http://www.pvx.com/support/home.htm
http://www.pvx.com:3000/support/home.htm

filename.ext is the item the browser is requesting. This could be the name of:

• an HTML page, e.g., myfile.htm
• a directory (include a trailing forward slash)
• a ProvideX program
• or any file or any type (including a directory listing) that appears in the Web

Server’s Root Directory or subdirectories of the Root Directory.

See also URL Request to Run a ProvideX Program, p. 22.

DireXions Examples (Appendix), p. 47

argument(s) optional argument(s). If you include arguments:

• Mark the start of a list of arguments with a leading ?question mark.
• You can use numeric variables, but they can’t have an equals sign or a + sign

(i.e. encoded space). By default, the Web Server sets the value of a
numeric (Boolean) variable to 1.

• You can use string variables in variable=data pairs, e.g. data=abc+123. (The
plus sign represents an encoded space in the string. That is, abc+123 is the
equivalent of "abc 123". There are no quotation marks enclosing the string
value in the URL.)

• You can include command line arguments.
• If you include more than one argument, use an ampersand as a separator, e.g.

?myvar1&data=abc+123&nextvariable

NOTE:

The Web Server saves command line arguments in %ARGS$[1:%ARGS] where:

• %ARGS$ stores the arguments (like the ARG() function return value) and
• %ARGS stores the number of the arguments (like the NAR system

variable).
19 The ProvideX Web Server Reference, 10/10/01 19

Web Server can handle virtually any type of file and serve it back to the client. (Exception: The Web
Server does not currently allow for CGI scripts other than ProvideX programs.)

NOTE: Characters allowed in a URL are uppercase A-Z, lowercase a-z, integers 0-9, and $-
_.+!*’(), (i.e. the dollar sign, minus sign, underscore, period, plus sign, exclamation
mark, asterisk, single quotation mark, standard brackets, and comma). Anything else
must be encoded as a leading %percent sign plus the ASCII representation of the
character’s HEX value (i.e., its HTA() value).

Requests: Examples

The following example is a request for the file "myfile.htm" from the Root Directory of the web server
www.pvx.com. Since no optional TCP socket is specified, the request would be made to the
www.pvx.com web server on TCP socket 80 (the default).

The example: http://www.pvx.com/myfile.htm?numvar1&stringvar=abc%20def would
pass two variables to the file:

numvar1 would become the numeric variable numvar1 with a value of 1
stringvar would become the string variable STRINGVAR$ with a value of "abc def" (%20

becomes the space).

This example http://127.0.0.1/somprog?one+two+three is a request for the file "someprog"
from the web server currently running on the local machine and passes it three arguments, which the
Web Server returns in %args$[%args] as %ARGS$[1]="one", %ARGS$[2]="two" and
%ARGS$[3]="three". The value in %ARGS=3. See ProvideX Web Server Variables, p. 28.

The two examples below are requests for the program "someprog" from the sub-directory "somedir" in
the web servers Root Directory. The first example creates a numeric variable, ONE=1. The second
passes the values in %ARGS$[1]="one" and %ARGS=1.

http://127.0.0.1/somedir/someprog?one

http://127.0.0.1/somedir/someprog?+one

This example requests the file named "myprog" which, if it’s a Providex program, will start execution at
the label LOOP:

http://127.0.0.1/myprog;loop?comp=001&name=Your+Name+Here&copies=3©&now+then

It is passing the following from the URL for use in the ProvideX program:

comp=001 as COMP$="001"
name=Your+Name+Here as NAME$="Your Name Here"
copies=3 as COPIES$="3"
copy as COPY=1
now+then as %ARGS$[1]="now", %ARGS$[2]="then", %ARGS=2

This example is a request to the web server listening on port 2000 to RUN the file "someprog", if it’s a
ProvideX program:

http://127.0.0.1:2000/someprog?name=you&name=me&name=them

Note that the arguments all have the same variable name. This is handled as a special case. When a
variable name is passed more than once, the Web Server creates a single variable (in this instance,
NAME$) and concatenates the data from each consecutive pass to the previous value in the variable as
+SEP+extra data (in this instance, NAME$="you"+SEP+"me"+SEP+"them".
20 The ProvideX Web Server Reference, 10/10/01 20

The Web Server builds a special COMPOSITE STRING named CGI$. When you pass variables (either
string or Boolean numeric, but not arguments) the Web Server builds an IOLIST of your variable names
and then DIMensions CGI$ to that IOLIST. Variable names passed more than once only appear in the
IOLIST once.

http://127.0.0.1/myprog;loop?comp=001&name=Your+Name+Here&copies=3©&now+then

For the example above, a PRINT LST(IOL(CGI$)) directive returns

IOLIST COMP$,NAME$,COPIES$,COPY

You can assign the current data values to the DIMensioned composite string CGI$ from the variables
passed in the URL by using CGI$=REC(IOL(CGI$)) when RUNning your program. This allows you to
gain access to the data as composite string elements, in this instance, with the following values:

CGI.COMP$="001"
CGI.NAME$="Your Name Here"
CGI.COPIES$="3"
CGI.COPY=1

Requests: Examples
21 The ProvideX Web Server Reference, 10/10/01 21

URL Request to Run a ProvideX Program
Request for a ProvideX Program

Format:

URL to Run Program protocol://server[:socket]/program[;entry][?argument[&argument...]]

Description:

Here’s how the Web Server works when it receives a URL request to run a program:

• The web server (port monitor) receives a browser’s request to RUN your ProvideX program file
and checks for validity. (Does the file exist? Is it a program file in tokenized code? ...). If the
request is valid, it assigns the task to a task handler.

• The task handler parses variables and arguments from the request, loads the variables with
available data, suspends itself and RUNs your ProvideX program, starting at the entrypoint if
you specify one in the URL.

• Your program creates the output and directs it to the %print_fn channel. See also %print_fn, p.
31. Then your program exits. (Note: If your program is creating output other than the default
"text/html" mime type, make sure you assign the matching mime type to the Web Server’s
%content_type$ variable. See also %content_type$, p. 29 and Mime Configuration, p.
17.)

• The task handler regains control, processes your incoming data according to its mime type and
builds the blocks of outgoing data. Then it builds the outgoing header information for your
data and returns the data to the port monitor.

• The port monitor returns the data to the browser when the job is completed.

Where:

protocol is the applicable network protocol, for example: http:// or ftp://

server is the server name. Use an IP (internet protocol) address like 127.0.0.1 or a DNS
(domain name) like www.pvx.com

socket is an optional TCP socket or port number (an integer preceded by a colon). Valid range:
1 to 65535. Values below 2000 are normally reserved for standard Internet activities.

By default, all requests from a client are sent to TCP socket 80, unless you override the
port number in your URL statement. To do this in any HTTP-compliant browser, include a
colon and the port number right after the server name. For instance, the first URL below
would default to TCP socket 80. The second would connect with TCP socket 3000.

http://www.pvx.com/support/home.html
http://www.pvx.com:3000/support/home.html

program is the name of the ProvideX program the browser is asking the Web Server to RUN.
Note that Your Web Application Must "Stand-Alone", p. 23.

entry is the optional line label where the ProvideX program starts. See also Entry Points, p.
23. If you omit this, ProvideX starts running your application at the first executable line of
code in your program.

argument(s) optional argument(s). Mark the start of your argument list with a leading ?question mark
and when you have more than one argument, use an ampersand (&) as the separator
between arguments. For example:

?myvar1&data=abc+123&nextvariable

See also Variables as Arguments, p. 23 and Command Line Arguments, p. 24.
22 The ProvideX Web Server Reference, 10/10/01 22

Note that task handlers will:

• automatically CLOSE any files left open when your task is completed except for any files that
were open when it launched, and

• automatically clear all LOCAL variables (leaving their values unavailable to the next task
handler).

Task handlers will not automatically clear your GLOBAL variables and the global variables are not shared
between task handlers (so you must initialize your global variables in your applications).

You can use a web concept called a "cookie" to share information from one request to another. See *web/
cookie To Set, Send and Retrieve Cookies, p. 36.

You can use URLs (Uniform Resource Location requests) to pass arguments and information to your given
applications. See the examples and explanations below.

NOTE: The Web Server accepts standard CGI arguments as valid for ProvideX programs, but
does not currently allow for other types of CGI scripts. ProvideX programs will run
faster if in tokenized format. However, you can use ASCII text ProvideX programs if
they have a file extension and you set the mime type for that extension to
application/providex.

The example here is a simple GET request to run a ProvideX program. (The POST method would relegate
variables and data to the body of the request. See Client/Browser Requests, p. 18 for more information
on the differences between GET and POST requests.)

http://server/myapp/myprog;start_here?my_str_var=abc&my_B_var&next_var=123

Reminder: Characters allowed in a URL are uppercase A-Z, lowercase a-z, integers 0-9, and $-
_.+!*’(), (i.e. the dollar sign, minus sign, underscore, period, plus sign, exclamation
mark, asterisk, single quotation mark, standard brackets, and comma). Anything else
must be encoded as a leading %percent sign plus the ASCII representation of the
character’s HEX value (i.e. its HTA() value). For example, a space character is
represented as 20 in hex and you would use %20 in your URL.

• String variables in variable=data pairs. In the example above, the task handler would create a
variable my_str_var$ with a value="abc". (In the URL itself, there is no trailing $ dollar
sign in the variable name, and there are no quotation marks enclosing the string value.) You
can use a plus sign + in your URL to encode spaces in strings, as in data=abc+123, in this

Your Web Application Must "Stand-Alone"
Incoming requests are processed by the next available task handler. All requests are independent of each
other and do not interrelate or share information with each other. Each web application must stand alone
in the here and now.

Entry Points
The ProvideX Programming Language allows you to use line-label entrypoints (e.g. in CALL directives).
You can also include entrypoints in Web Server URLs to redirect processing in your web applications. In
the example above, a ProvideX Web Server task handler would run the ProvideX program myprog starting
execution at the program line labelled start_here: instead of at the first executable line of the program.

Variables as Arguments
If you include variables as arguments in your URL, ProvideX treats them as real variables in ProvideX
itself. The task handler parses the URL and creates any variables it finds in your argument list. It pre-
loads them (either with any data sent along with them or with Boolean values) before it runs your program.
You can use:
23 The ProvideX Web Server Reference, 10/10/01 23

case, the equivalent of the ProvideX code data$="abc 123".
• Numeric (Boolean) variables do not have an assignment with an equals sign nor can they have

+plus signs in their names (no encoded spaces). The task handler sets the value of a
numeric variable to 1. (In the example above, my_B_var would have an assigned value=1.)

You can use your URL arguments to load values into your application to set conditions controlling
processing.

NOTE: During a POST operation, the browser only sends the web server variables which are
greater than NULL and <>0 (zero).

Example:

http://server/makewish;init?this+that&what=ProvideX+Web+Server&mine

The task handler would parse this URL and load the arguments as:

• two command line arguments (this and that)in %ARGS$[1] and %ARGS$[2]
• one string variable with decoded spaces (what$="ProvideX Web Server") and
• one Boolean variable (mine=1).

ProvideX Web Server Variables:
In addition to your own variables, you can make use of the ProvideX Web Server’s own variables in your
programs. See the list of reserved ProvideX Web Server Variables, p. 28 for details.

Command Line Arguments
Your URL can also include command line arguments. Note this and +that in the example below.
ProvideX evaluates everything between the argument separators (?,&) as a unit. If a unit has no equals
sign but includes a plus sign, the Web Server interprets the unit as command line arguments.

NOTE: The task handler adds any command line arguments it finds to the %ARGS$[] array,
containing from 1 argument to the number of arguments passed.
24 The ProvideX Web Server Reference, 10/10/01 24

About Your ProvideX Programs

Programs: Notes and Examples

Description:

Use the information in this section and the examples throughout the manual as an aid when you create
your web applications.

See also: DireXions Examples (Appendix), p. 47

• Although the memory file has a block size of 6K, your individual WRITE, WRITE RECORD or
PRINT output to the %print_fn channel should not exceed 4K, because the ProvideX Web
Server needs part of the memory file for other purposes (e.g. to add end-of-line translations
and characters which are needed by the browser but illegal in HTML code).

• Although you can generate more than one style of output in a single program (see Example:
Basic HTML Output, p. 26 with raw text in a single program), each mime style must be
generated through a separate request. You can’t mix different styles in a single output to the

Output from Your ProvideX Program
As output, you can return any data that is valid to the browser. This includes:

• HTML pages generated by your program code
• binary data which is to become a file on the end-user’s system
• JAVA script (which becomes part of the page to be evaluated by the browser) and
• raw data. (Set the flag %raw_text, p. 31 in your program. Then the Web Server wraps the

required HTML around your data.)

Your ProvideX programs can send files to a browser if you set the %content_type="application/
octet-stream" and %content_filename$="somefile.ext" and then dump the file into the
%print_fn channel (maximum 4096 bytes per WRITE RECORD). See also: ProvideX Web Server
Variables, p. 28.

No Direct Interaction with User
Your ProvideX web application can do virtually anything except interact directly with the user interface.
This means you can’t use

• INPUT or OBTAIN directives
• the built-in graphics control objects such as BUTTONs, LIST_BOXes
• the print mnemonics, such as ’FRAME’, ’TEXT’, ’CS’ etc.

Interaction with the user must be done indirectly through HTML forms or pages that can request
information and return resulting responses and data to your program. Your program can construct an
HTML page on the fly from the data. See entry points 9 to 13 in *web/util CALL EntryPoints, p. 45 and
see *web/merge To Merge Dynamic Data with HTML Templates, p. 39.

Standard Output Channel
Think of coding for browsers as block mode transmission to a background task. The Web Server sets up a
memory-resident logical file using the %print_fn, p. 31. This variable contains the logical file number or
channel the Web Server is using for standard output. You dump your data into the memory file by using
PRINT, WRITE and other output directives with "(%print_fn)" as the file channel as in PRINT
(%PRINT_FN)DATA. Then the Web Server transmits the contents for you.

Limits on Output:
There are a few limits on the amount and type of output you can generate:
25 The ProvideX Web Server Reference, 10/10/01 25

memory file.
• Remember that your application has a 90-second time-to-live. If the task handler doesn’t

complete your given ProvideX application before the timeout, the port monitor will kill your job
and start a new task handler in its place. See also About Timeouts, p. 6.

1. to run the program,
2. to dump the variables and
3. to list the program.

http://127.0.0.1:4000/web_text
http://127.0.0.1:4000/web_text;dump
http://127.0.0.1:4000/web_text;list

The simplest method of generating a report is by using our %raw_text flag, as in the ProvideX program
below. Notice the WEB_TEXT entry point line labels which were requested in the URLs above. The task
handler starts executing each of the three requests at its respective executable line or label entrypoint
(0010, DUMP: and LIST:) below.

0010 ! WEB_TEXT (Report Style Output in Raw Text):
0020 LET %RAW_TEXT=1,%RAW_TITLE$="Example: Raw Text Output"
0030 LET C=HFN; OPEN (C,IOL=*)"CSTFILE"
0040 PRINT (%PRINT_FN)@(1),"CustID",@(20),"Customer Name",'LF'
0050 LOOP:
0060 READ (C,END=DONE)
0070 PRINT (%PRINT_FN)@(1),CST_ID$,@(20),CST_NAME$
0080 GOTO LOOP
0090 DONE:
0100 CLOSE (C)
0110 END
0120 !
0130 DUMP:
0140 LET %RAW_TEXT=1,%RAW_TITLE$="VARIABLE DUMP FOR WEB_TEXT"
0150 DUMP (%PRINT_FN)
0160 END
0170 !
0180 LIST:
0190 LET %RAW_TEXT=1,%RAW_TITLE$="LISTING OF WEB_TEXT PROGRAM"
0200 LIST (%PRINT_FN)
0210 END

This is a simple example of a ProvideX application which contains code to generate HTML and raw text to
illustrate that since each entrypoint routine (i.e. line 0020 and LIST_AND_DUMP:) stands alone as a
separate request, each can have its own styling.

0020 PRINT (%PRINT_FN)"<html><head>"
0030 PRINT (%PRINT_FN)"<title>"+"This is a simple HTML example"+"<title>"
0040 PRINT (%PRINT_FN)"</head><body>"

Example: Basic Raw Text Output
The URLs and ProvideX program below were created for the ProvideX DireXions Technical Conference in
March, 1999 to illustrate simple raw text requests. Three URL requests are set up in the browser’s
address field:

Example: Basic HTML Output
In the next example, also created for the ProvideX DireXions Technical Conference, two URL requests are
set up in the browser’s address field:

http://127.0.0.1:4000/web_html
http://127.0.0.1:4000/web_html;list_and_dump
26 The ProvideX Web Server Reference, 10/10/01 26

0050 PRINT (%PRINT_FN)"<h1>"+"This is a simple HTML example"+"<h1><hr><p>"
0060 PRINT (%PRINT_FN)"Welcome to ProvideX Web Server</p>"
0070 PRINT (%PRINT_FN)"<p>This is an HTML output example</p>"
0080 PRINT (%PRINT_FN)"<p>You can use any HTML code as output as long as it "
0090 PRINT (%PRINT_FN)"adheres to standard HTML specifications."
0100 PRINT (%PRINT_FN)"</p><body></html>"
0110 END
0120 !
0130 LIST_AND_DUMP:
0140 LET %RAW_TEXT=1,%RAW_TITLE$="Listing + Variable Dump in Raw Text"
0150 LIST (%PRINT_FN)
0160 PRINT (%PRINT_FN)'FF'
0170 DUMP (%PRINT_FN)
0180 END

0010 PRINT (%PRINT_FN)"<script Language=JavaScript>"
0020 PRINT (%PRINT_FN)"IF(theForm.AdInfo.value==""){
0030 PRINT (%PRINT_FN)"alert("Please enter a value for the \"Ad Information\"
0030:field.");"
0040 PRINT (%PRINT_FN)"theForm.AdInfo.focus();"
0050 PRINT (%PRINT_FN)"return (false);"
0060 PRINT (%PRINT_FN)"}"
0070 PRINT (%PRINT_FN)"</script>"

Example: Java Script
This example illustrates Java Script in a ProvideX web application. The example is not complete.
27 The ProvideX Web Server Reference, 10/10/01 27

ProvideX Web Server Variables

Webserver Variables

The ProvideX Web Server gives you access in your programs to some of its own variables. These
variables are created or filled by the Web Server and/or with information received from the browser. A
leading %percent sign indicates that the variable is global.

Web Server Variable Value(s):

Warning The following variables are reserved for exclusive use by the
ProvideX Web Server for special file channel values. Please do
NOT use these file channels:

%mime
%tmpl
%hits
%serv
%TCP_FN

You can use %body_buff in your applications, but for READing
only. See %body_buff, below.

%allow$ Allowed methods recognized by the browser.

%args$[%args] The %args$[] array contains the command line arguments passed
to the task handler by the URL request, with %args (number of
arguments passed) ranging from 1 to the total number of arguments
passed.

%authorization$ USERID/PASSWORD screen if passed from the browser. Typically
encoded in Base64.

%body_buff The Web Server uses this file channel for an incoming request’s body.
It converts the first 32000 bytes into variables and ignores the rest, but
leaves all of the body in %body_buff so that it’s available if you need it.
This is a *memory* file with a maximum record size of 8192 bytes.
Data is blocked into more than one data record (beginning IND=0 to
IND=n).

You can use %body_buff in your applications, but it should only be
READ from. The file whose channel is in the numeric variable
%body_buff contains any body information sent in a POST request. If
your POST sends more information than will fit in a single ProvideX
STRING variable, then you must retrieve it manually from the
%BODY_BUFF channel.

NOTE: %CONTENT_TYPE$ will tell you the mime type of
the body content. %CONTENT_LENGTH will tell
you the body’s total length (number of bytes).

Example:

READ RECORD(%BODY_BUFF,IND=0)A$!Reads first block
READ RECORD(%BODY_BUFF,END=DONE) !Reads remaining blocks

%cgi$ Contains a compiled IOLIST of all the variable names passed.

%content_encoding$ Data encoding if the browser pre-encodes the data.
28 The ProvideX Web Server Reference, 10/10/01 28

%content_filename$ If you set this to a filename (no path), the Web Server adds a Content-
Disposition header to the outgoing data stream. This notifies the
browser to Save As the filename you supply.

TIP: You can use this to send a ProvideX program to a
browser without running it. (A typical link to a
browser page would RUN a ProvideX program if
clicked on.)

%content_length Length of the returned content. This information is available to your
program if given. You do not need to set this when your ProvideX
application finishes. The task handler will calculate it, based on the
data output and any automatic translation done to send your data back.

%content_type$ Content or mime type. If the browser sends a content type, the value is
available to your ProvideX program. If your ProvideX application does
not assign a %content_type$, the Web Server defaults to text/html.

If your ProvideX application overrides the default %content_type$,
then the Web Server will pass your value for the content type back to
the browser.

If the %content_type$ begins with "text/" then the Web Server
automatically performs any required end-of-line conversions.

%cookie.rcv The number of cookies received from the browser

%cookie.snd The number of cookies you SET and send to the browser. The
cookies are stored in strings of %cookie.n$ where n is the cookie
number.

%document_label$ The line label entrypoint for your program, if given in the URL (e.g.
myprog;entry).

%document_root$ The root directory for the request.

%document_uri$ The filename portion after the protocol and server in the URL request.
Note that uri is an acronym for Uniform Resource Indicator.

Web Server Variable Value(s):
29 The ProvideX Web Server Reference, 10/10/01 29

%exit_code Error status on exit. The task handler will set %exit_code to an
appropriate value. The value is typically 200 ("OK") unless there is a
problem (such as in situations where the task prematurely disconnects,
or there is no data output). Valid codes include:

200 OK
201 Created
202 Accepted
204 No Content
300 Multiple Choices
301 Moved Permanently
302 Moved Temporarily
304 Not Modified
400 Bad Request
401 Unauthorized
403 Forbidden
404 Not Found
500 Internal Server Error
501 Not Implemented
502 Bad Gateway
503 Service Unavailable

The Web Server returns an Error 403 Forbidden on browser
requests for ProvideX data files (keyed, indexed ...).

You can assign a value to %exit_code if you want to force the task
handler to return a specific error code. For example, if you set
%exit_code=401, the task handler will return an Error 401 to the
browser.

%from$ Source if the browser sends a From.

%hit_counter The current number of hits for your page (if any).

html_file$ The name of the HTML page you want *web/merge to evaluate and
dynamically send to the %print_fn channel.

%HTTP_accept$ Mime content types the browser will accept from you. */* means any
content type.

%HTTP_accept_encoding$ Any inline encoding or compression methods the browser has
available for your use.

%HTTP_accept_language$ Language the browser wants you to send in.

%HTTP_cookie$ The string of cookies received from the browser

%HTTP_referer$ Referral source if the browser was pointed to your website by some
other location. The name of the URL which originated the request.

%HTTP_user_agent$ Details about the browser type connecting to you.

%ismas90 Value is 1 if using the Web Server inside Mas90’s internet access
module. Otherwise, value is 0 (zero).

%lang$ The LANG file extension in use in ProvideX (default is .en)

Web Server Variable Value(s):
30 The ProvideX Web Server Reference, 10/10/01 30

%new_location$ This is an internal variable, set during a redirection request. It should
be used only when the user’s browser should go to another page
automatically.

When a browser makes a request for a URL, you can force the browser
to "go somewhere else" or make another request for something else by
setting %new_location to the URL you actually want the browser to
request and by setting your %exit_code=301. You must set both
these values to force a browser to automatically generate a new
request for the URL in %NEW_LOCATION$.

%path_translated$ The root directory plus the filename portion of the URL requested, with
delimiters based on the O/S on which the Web Server is currently
running (the backslash \ for Windows or standard slash / for UNIX).

%print_fn The setting for the file channel the Web Server uses as a standard
output channel. In effect, the Web Server sets up a memory-resident
logical file on the %print_fn channel. You dump your data into this file
by using PRINT, WRITE and other output directives with %print_fn as
the file channel and the Web Server transmits the contents for you.
For example:

PRINT (%print_fn)data

The task handler will read the data in this example when your
application is complete and send it back to the port monitor for
transmission to the browser.

Note: Your ProvideX web application should use ONLY
this as the file channel for data that is sent to the
browser.

%query_string$ The string of arguments following the filename in the URL.

%raw_next$ If set, %raw_next will add a NEXT button to the bottom of your
%print_fn data if %raw_text=1. (%raw_text$ should be set to the
URL you wish the button to jump to.)

%raw_next_lbl$ The text to appear on your "next" button. The default is the word
"next".

%raw_text 0=output to browser as is
1=wrap HTML header/body around output from ProvideX application

%raw_title$ If %raw_text is set, then %raw_title$ will be the title used in the HTML
generated around your %print_fn output.

%remote_ip$ The IP address (or DNS name) of the browser.

%request_method$ The HTTP request method (set to GET, HEAD or POST).

%server_name$ The name of your host, as supplied by the browser connecting to you
(for example, www.pvx.com).

%server_port The TCP socket number the web server is monitoring

%server_protocol$ Set to HTTP/1.0

%server_rootdir$ The default root directory for the given server.

%server_software$ Name of web server and version

%SMTP_gateway$ The SMTP gateway you selected in your SMTP dialogue.

%SMTP_socket SMTP socket number you specified in your SMTP dialogue, prefixed
by a semicolon. The default is ;25

Web Server Variable Value(s):
31 The ProvideX Web Server Reference, 10/10/01 31

Notes: When you create ProvideX applications to service web requests:

The Web Server automatically CLOSEs any and all file channels upon completing your ProvideX program
task, except for:

• any files belonging to the Web Server itself and
• any files which were open when the Web Server launched (any files you OPENed in your

START_UP).

Regular variables are destroyed automatically when your application exits.

Please clear any GLOBAL variables you create in your application. Since the Web Server works by
multiple task handling, the values won’t be available between tasks, and are therefore useless as a
method of passing information from page to page. (Use cookies to pass information from one request to
another.)

Do NOT issue a START command.

%tcp_fn File channel the task handler is using to talk to the port monitor.

Warning: Do NOT perform any I/O on the %TCP_FN channel!

%time_offset The offset to GMT time, e.g. =-500 (-5 hrs) or =430 (+4 hrs 30
minutes)

Web Server Variable Value(s):
32 The ProvideX Web Server Reference, 10/10/01 32

ProvideX Web Server Utilities

Utilities

The ProvideX Web Server comes with a number of utilities to help you build your web applications quickly
and easily. (Note that ProvideX converts the * asterisk in program names to the path to the ProvideX lib
directory.) The utilities are presented in alphabetical order in the following sections.

See *web/base64 To Encrypt or Decode Data, p. 34

*web/cookie To Set, Send and Retrieve Cookies, p. 36

*web/mail To Send Mail to a Local SMTP Server, p. 38

*web/merge To Merge Dynamic Data with HTML Templates, p. 39

*web/util HTML Coding Utility, p. 45
33 The ProvideX Web Server Reference, 10/10/01 33

*web/base64 To Encrypt or Decode Data
Utility *web/base64

Format:

Basic Call Format call "*web/base64;entrypoint",required_arguments

Description:

The *web/base64 program contains routines to encrypt data in base64 format and to decode it or convert it
back.

The Base64 algorithm encodes 3 bytes (value 0-255 each) into 4 bytes (value 0-63 each) using plain
ASCII characters A-Z,a-z,0-9,+/ to allow you to transmit binary files using text-only protocols across the
Internet. Base64 is most commonly used for Mime encoding of e-mail attachments and for authorization
codes in web pages.

The *web/base64 utility is a CALLed program with various entry points and various ENTER argument lists.
See the chart below for a list of Formats for the various entry points, with arguments and descriptions.

Note 1: For Encode or Decode: Filenames or Channel Numbers

Your infile$ and outfile$ values in Formats 3 and 4 can be either filenames or logical file (channel)
numbers. You must use strings to pass channel numbers (i.e. "24" would perform the operation on
channel 24). If you use channel numbers instead of filenames, you can have a file on disk encoded to a
memory file for later program handling. If you assign a channel number in either infile$ or outfile$, then
that channel will remain open. The only channels automatically closed are the ones the *web/base64
program opens.

Where:

entrypoint is the entry point (line label) where execution in the *web/base64 subprogram starts for
the given routine.

required_

arguments

is a string or numeric variable name. For each entry point of the base64 utility, there
are different argument lists. See the chart below for details.

Format: Directive and Description:

1. Encode String call "*web/base64;ENCODE_STR",instring$,outstring$

For encoding strings

2. Decode String call "*web/base64;DECODE_STR",instring$,outstring$

For decoding strings

3. Encode File This format has three variations for encoding files:

call "*web/base64;ENCODE_FILE",infile$,outfile$
call "*web/base64;ENCODE_FILE",infile$,outfile$,blocksize
call "*web/base64;ENCODE_FILE",infile$,outfile$,blocksize,EOL$

Block size and EOL (End of Line terminator) are optional. If you include EOL, you
must also include block size.

4. Decode File call "*web/base64;DECODE_FILE",infile$,outfile$

For decoding files.

Notes: On Encoding and Decoding Files
The following notes apply when you are encoding or decoding files.
34 The ProvideX Web Server Reference, 10/10/01 34

Note 2: For Encode or Decode: Append to Existing File, If Any

The base64 program READs an incoming file from its beginning (FIFO). With an output file (using either
filename or channel number), the Web Server creates the file if it doesn’t exist and appends to the file if it
does exist. That is, it tacks the output onto the end of an ongoing encryption/decryption.

Note 3: For Encode Only: Block Size

You can include an optional block size parameter in your arguments when you encode files (Format 3).
This won’t have any affect on a disk file but does let you specify how big encoded record blocks will be
when data output is written to a *memory* file. Each record your program WRITEs to the file has a
separate index.

The primary use for a block size limit is in e-mail where lines must be less than or equal to 98 bytes each.
If you assign block size when you encode files, then the Web Server automatically segments records for
you. If you omit block size, the default is 4096 bytes per block.

Note 4: For Encode Only: EOL (End of Line Terminator)

You can assign an end of line terminator by including the eol$ parameter when you encode files. Your
eol$ terminator should be either $0a$ or $0d0a$. The eol$ is only used for encoding the file. If you include
an eol$, it will be appended to each block. If you omit block size, then no eol$ will be appended.

Error #0: Record/file busy
Error #12: File does not exist (or already exists)
Error #46: Length of string invalid

(When encoded, string will exceed maximum string length allowed.)
Error #48: Invalid input -- Try again

(Unknown character encountered during decode. Indicates corrupted data, or data not in
Base64 format.)

Base64 Error Messages
When the Web Server encounters errors in encoding or decoding Base64, it returns the usual file I/O and
handling error messages, including:
35 The ProvideX Web Server Reference, 10/10/01 35

*web/cookie To Set, Send and Retrieve Cookies
Utility *web/cookie

Formats for *web/cookie EntryPoints

1. Return: EntryPoint=GET call "*web/cookie;GET",number,name$,data$

2. Send: EntryPoint=SET call "*web/cookie;SET",name$,data$,path$,expires$,domain$[,secure]

Description:

You can use our Web Server *web/cookie utility to SET and/or GET cookies. Each cookie is a
VARIABLE=DATA pair with return characteristics (path to match, domain, expiry and secure). Although
web server requests are separate and unrelated and can’t share variables or data on the server, you can
get around this by using cookies to pass data and variables to the browser which in turn can send that
information back for different requests.

When you SET a cookie, it’s included in the header along with your data and sent back to the browser.
The return characteristics determine when or if the browser will return the cookie with a request. All cookie

Where:

number is the ordinal number of the given cookie (range: 1 to 300, size limit=4K each).

Note: The Web Server sets %cookie.rcv, p. 29 to the total number of cookies
received or 0 (zero) for no cookies received.

name$ is the name of the cookie (like a variable name)

data$ is the data in the given cookie.

path$ is the minimum match you want with a filepath before the cookie is sent back. (If no match
is found, the cookie is not sent back from the browser.) The path$ should be followed by
a trailing forward slash (/).

Examples:

• the slash alone (/) would match any URL on your website
• /sales/orders/ would match /sales/orders/myapp and /sales/

orders but would not match /sales or /support/orders

expires$ expires$ is the date (and/or time) the cookie will expire. See The "expires$" Parameter,
p. 37 for a list of acceptable values you can assign.

domain$ domain$ is the domain name for your host site. The cookie is only valid for the current
domain/host.

If domain$>"" then it must include a minimum of 2 periods. For example:

• domain$=".pvx.com" is a cookie that is valid for any path$ in the pvx.com
domain

• domain$="proxy.pvx.com" is a cookie that is only valid for any path$ on the
"proxy" machine in the pvx.com domain.

If domain$="" then the cookie will only be valid for the current browser session. It will be
cleared if the user moves to another site.

secure Available in future version.

If you include this parameter, the cookie will only be returned if the TCP connection is
secure. The Boolean values are:

=1 (one) if you only want the cookie returned when the connection is secure
=0 (zero) otherwise. The value is 0 (zero) if you omit secure, as, for example, in:
call "*web/cookie;SET",name$,data$,path$,expires$,domain$
36 The ProvideX Web Server Reference, 10/10/01 36

parameters are cleared when the task is complete.

If the conditions warrant it, the browser will return the cookie to the server when your user requests specific
web pages. For instance, you can use SET to assign the user’s LOGIN ID / PASSWORD to a cookie, so
that the user only has to enter it once. With cookies, you can also create shopping cart style applications
that "remember" the items and quantities chosen.

Each VARIABLE=DATA pair is 1 cookie. You can SET up to 300 cookies, each with a size limit of 4K. The
browser will return as many as it believes match a given request.

Note: The internal variable %cookie.snd, p. 29 is incremented for each cookie you SET.
Cookies are stored in strings in temporary variables as %cookie.nnn$ where nnn is
the cookie number.

The "expires$" Parameter

The chart below lists valid values for the expires$ parameter in the *web/cookie;SET subroutine.

Format 1: call "*web/cookie;GET",number,name$,data$
Use Format 1 to retrieve a cookie. Your CALL should include three arguments. You must pass the number
of the cookie (1 to %cookie.rcv). The program will return the name$ and the data$.

Format 2: call "*web/cookie;SET",name$,data$,path$,expires$,domain$
Use Format 2 to create and send a cookie. Your CALL should include five arguments:

name$ the name of the cookie
data$ the data to send to the browser
path$ your file path criteria for matching the URL’s path
expires$ the cookie’s expiry date and/or time
domain$ the domain name of your website

You can also set a sixth parameter to make sure the TCP connection is secure.

If Then:

expires$="" no expiry date is sent and the cookie will expire at the end of the current
browser session.

expires$="0" the date-time equivalent of RIGHT NOW will be sent.

expires$=
"YYYYMMDDHHMMSS"

expiry is set to a specific date. The date must be in the format
YYYYMMDDHHMMSS: for example, expires$="19990709143030" (HH
is in 24 hour time).

expires$="+nnnn"

or

expires$="-nnnn"

the cookie will expire NOW plus or minus nnnn time units. The default time
unit is seconds, but you can append an alpha code to change or override the
current setting (Y=years, D=days, H=hours, M=minutes, S=seconds).

Examples:

expires$="+1Y" sets an expiry 1 year from NOW
expires$="+30D" sets an expiry 30 days from NOW
expires$="+5H" sets an expiry 5 hours from NOW
37 The ProvideX Web Server Reference, 10/10/01 37

*web/mail To Send Mail to a Local SMTP Server
Utility *web/mail

Format:

 call "*web/mail", SMTP_server$, From$, To$, Subject$, MessageText$, Return$

Description:

You can use the *web/mail utility for sending e-mail from a ProvideX application to a local SMTP Mail
Server.

Where:

SMTP_server$ is the IP address or DNS of the SMTP server. Note that TCP port ";25" is forced.

From$ is the e-mail address of the person or application sending the mail.

To$ is a list of recipient e-mail addresses separated by the SEP character ($8a$).

Subject$ is the subject line of the e-mail.

MessageText$ is the text of the message.

NOTE: MessageText$ lines must end with $0d0a$ and must not exceed
100 characters per line, including the $0d0a$ terminator.

Return$ If an error occurs in sending the message, the response from the SMTP server will be
in Return$.
38 The ProvideX Web Server Reference, 10/10/01 38

*web/merge To Merge Dynamic Data with HTML Templates
Utility *web/merge

Format:

Special Codes in HTML Page ~~argument[?suffix]~~

Description:

A template is an HTML page with special coding embedded in it. You can create templates using any
HTML editor. A ProvideX Web Server utility, the *web/merge program, reads your HTML page, scanning
for specialty codes (arguments enclosed in double tildes: for example, ~~total?F:####0.00~~). It
evaluates the special codes embedded in the HTML page, substituting data as necessary, and sends the

Where:

~~ ... ~~ double tildes enclose special codes

argument is a string or numeric variable name. You can use any variable in any style (local,
global, system, array). For example:

~~address$~~
~~total~~
~~DAY~~

For some suffixes, your argument is the name of a program the merge utility will
perform. For instance, for the ?T suffix, it’s the program to fill the table which
immediately follows your ~~prog;stmtref?T~~. If there is no suffix, the argument
is a simple variable name.

?suffix is an optional suffix. If you include a suffix, your argument must be valid for the
special processing done by the suffix declaration. Valid suffixes are:

?+ CheckBox / RadioButton is initialized based on the value in your argument
variable. (Values: 1=ON, 0 (zero) =OFF)

?A Do not run value through HTML escape code translator (i.e. don’t perform
HTML encoding: <=&It; >=> "=" &=&)

?F:xxx Convert using format mask specified (uses STR() function)
?L Perform URL encoding (i.e. 20+$8a$ becomes %20%8A, etc.)
?P Perform the program name given. For example, ~~my_prog?P~~. Note that

any performed program must have output in HTML format and must do
its own escape coding. The Web Server won’t check or convert output.

?X Evaluate argument as string expression and substitute result

There are also three valid Table suffixes:

?CT (Colour Table) is a table suffix enhancement that allows you to set alternate
row background colours.

?JT[/H] (Jump Table) is a table suffix enhancement that allows you to fill the table
with as many records as available up to the maximum number of records
you specify. Use /H for custom positioning of hyperlinks.

?T The basic Table definition suffix includes the name of your program for the
merge utility to perform to fill the table which immediately follows your
~~prog;stmtref?T~~.

See also Table Suffixes, p. 40.

Examples:

~~Total?F:####0.00~~
~~dte(jul(0,0,0):"%Mz/%Dz/%Yl")?X~~
~~myprog;filltable?T~~
39 The ProvideX Web Server Reference, 10/10/01 39

dynamically-created page to the output channel %print_fn, p. 31.

Note: As a prerequisite to running the *web/merge program, set the value in HTML_FILE$
to the path / filename of your HTML template page.

The Web Server performs the *web/merge program when you RUN it, so variables, files, etc. are available
throughout.

Example:

0010 ! home.html - A misdirection
0020 LET MESS1$="Welcome",MESS2$="Please sign on",USERID$="",USERPASSWD$=""
0030 LET HTML_FILE$="orders/login.htm" ! See Orders Web Page 1: login.htm, p. 52.
0040 RUN "*web/merge"

For the example ~~myprog;filltable?T~~, the merge program executes the specialty code by
running the program myprog starting at the filltable: entry point. Each cell in your table would have a
variable name (like ~~Desc$~~ ~~QTY~~ etc.) for the values to be returned when the program you name
in your argument READs the file(s).

See also: Basic HTML Template Creation: Example, p. 41.

In Program "myprog;filltable"

The merge program starts execution at the filltable: line label in myprog in this example. The
program OPENs the files and READs the first record to obtain a row’s worth of data. It leaves the files
open and EXITs back to the merge program. The merge logic fills the cells of the row and returns control
to myprog;filltable. The program reads more data and EXITs back to the merge program’s table
logic (which fills in the cells for the next row). This continues until myprog;filltable does an EXIT 2,
which indicates to the merge program that the end of the table has been reached. The merge program’s
table logic then finishes off the HTML table coding and proceeds to process the rest of the template.

0080 !
0090 filltable:
0100 if %myfile=0 then %myfile=hfn; open(%myfile)"myfile"
0130 read(%myfile,end=50)a$,b,desc$,qty
0140 exit
0150 close(%myfile);%myfile=0;exit 2

See also: Basic HTML Template Creation: Example, p. 41

You can set one or both of the background colours to your own colour choice. If you set only the first
colour, *web/merge creates the second colour by using a lighter shade of your first choice. Please note
that some colours work better than others for alternating background shades.

Table Suffixes
You can use a program name and entry point label as your argument with ?T (and with the ?CT and ?JT
suffixes) in your HTML page or template, as in ~~myprog;filltable?T~~. Your program should OPEN
any files required, read the data needed to fill one row of your given table, and then EXIT, leaving the files
OPEN and the record pointers intact. Your program should CLOSE the files and EXIT 2 (exit with an Error
2) at the end of the records (EOF). This will tell the ?T table logic to complete the code necessary to finish
processing the HTML template.

The ?CT (Colour Table) Suffix
The ?CT table suffix lets you create a table with alternating background colours for the rows. For instance,
for ~~myprog;stmtref?CT~~, the ProvideX default is to alternate silver background (RGB 192,192,192)
for the odd numbered rows and gray background (RGB 222,222,222) for the even numbered rows.
40 The ProvideX Web Server Reference, 10/10/01 40

To Set Row Background Colours:

In the program you use to load the table (myprog, in the example), use the COLOR: statement label as a
keyword to notify *web/merge that you are assigning your own background colour(s) for alternating rows.
Then, use your COLOR: routine to assign one or both colours to the *web/merge COLOR$ array, using the
pound symbol followed by the hex equivalents of your RGB values. For example, for silver (RGB
192,192,192), you would use #C0C0C0. The example below just reverses the order of the defaults:

2500 COLOR:
2510 LET COLOR$[1]="#323232" ! Gray
2520 LET COLOR$[2]="#C0C0C0" ! Silver

By default, a jump table is followed by default hyperlinks of next and previous MAX_ROW records, centred
under the table. For greater control of hyperlink placement use the ?JT/H suffix. Then, instead of being
centred directly under the table, the hyperlinks will be put where you place the following keywords
%FRWD_HYPLINK$ and %BACK_HYPLINK$ for the specified table in your HTML template. For
instance, to place the hyperlinks at the left margin:

~~myprog;filltable?JT/H~~
%back_hyplink$
%FRWD_HYPLINK$

Example:

For a ?JT Jump Table, you must READ your records based on a key=JK$ (a specialty variable). It’s
important to READ immediately after OPENing your file so that *web/merge can save the relevant next and
previous hyperlinks. For example:

0510 OPEN (CHANNEL)"YOUR_FILE"
0520 READ (CHANNEL,ERR=*NEXT)
0530 GOTO YOUR_LOAD_ROUTINE
...
2000 YOUR_LOAD_ROUTINE:
2010 LET JK$=KEY(CHANNEL)
2020 READ (CHANNEL,KEY=JK$,ERR=*NEXT)

<html>

<head>
<title>Exercise - Basic Template Creation and Usage</title>
</head>
<body background="images/whttxtr1.jpg">
<div align="right">

<table border="1" cellpadding="3" width="100%">
 <tr>
 <td width="100%" colspan="2" bgcolor="#000000"><p
align="center"><big><big><big>The ProvideX Web Server Workshop</

The ?JT (Jump Table) Suffix
The ?JT table suffix lets you fill your table with as many records as are available, up to the maximum
number of records. (This differs from the ?T suffix, which fills the table using ALL the records, stopping
only when ProvideX encounters your EXIT 2 directive.) Use the numeric variable MAX_ROW (keyword,
default = 100) to set the maximum number of rows you want returned for each page produced using the
?JT suffix.

Basic HTML Template Creation: Example
The next example of basic HTML template creation was designed using Frontpage for the ProvideX
DireXions Technical Conference in March, 1999. See also the DireXions Examples (Appendix), p. 47.
41 The ProvideX Web Server Reference, 10/10/01 41

strong></big></big></big></td>
 </tr>
 <tr>
 <td width="50%">Your IP Address is: ~~%remote_ip$~~</
font></td>
 <td width="50%">You’ve visited this page:
~~%hit_counter~~ times.</td>
 </tr>
</table>
</div><div align="right">

<table border="1" cellpadding="3" width="100%">
 <tr>
 <td width="66%" bgcolor="#000080"><font face="Tahoma"
color="#80FFFF">Directory
 Browse of: ~~%document_uri$~~</td>
 <td width="34%" bgcolor="#000080"><font face="Tahoma"
color="#80FFFF">As of:
 ~~dte(0:"%Mz/%Dz/%Yl %hz:%mz:%sz %P")?X~~</td>
 </tr>
</table>
</div><div align="right">

<table border="1" cellpadding="3" width="100%">
 <tr>
 <td width="33%">File Name</td>
 <td width="33%">Size (in bytes)</
strong></td>
 <td width="34%">Modification Date</
strong></td>
 </tr>
</table>
</div>

<p>~~webpvx03;load_dir?T~~</p>
<div align="right">

<table border="1" cellpadding="3" width="100%">
 <tr>
 <td width="33%">~~filname$?A~~</td>
 <td width="33%">~~filtype$~~</td>
 <td width="34%">~~fildate$~~</td>
 </tr>
</table>
</div>

<p>If you have any problems with this web page, please contact our webmaster.</p>
</body>
</html>

0030 LET NOW$=DTE(0:"%Mz/%Dz/%Yz %h:%mz:%sz %P")
0040 LET HTML_FILE$="basetmpl.htm"
0050 PERFORM "*web/merge"

Basic Template Filling: Example
0010 ! webpvx03 - Basic Template Filling - A Directory Browse
0020 !
42 The ProvideX Web Server Reference, 10/10/01 42

0060 END
0070 !
0080 !
0090 LOAD_DIR:
0100 IF %DIR=0 THEN LET %DIR=HFN; OPEN INPUT (%DIR)"."
0110 READ (%DIR,END=LOAD_DIR_DONE)FILNAME$
0120 LET CHAN=HFN; OPEN INPUT (CHAN,ERR=LOAD_DIR_NEXT)FILNAME$
0130 LET FILNAME$=""+FILNAME$+""
0140 IF MID(FIB(CHAN),19,1)="D" THEN LET FILTYPE$="<Dir>" ELSE LET FILTYPE$=STR
0140:(DEC(00+MID(FIN(CHAN),1,4)):"###,###,##0")
0150 LET FILDATE$=DTE(JUL(1970,1,1)+DEC($00$+MID(FIN(CHAN),5,4))/60/60/24,*:"%M
0150:z/%Dz/%Yz %h:%mz:%sz %P")
0160 LOAD_DIR_NEXT:
0170 CLOSE (CHAN)
0180 EXIT
0190 !
0200 !
0210 !
0220 LOAD_DIR_DONE:
0230 CLOSE (%DIR); LET %DIR=0; EXIT 2

This is a Word example, creating an HTML page
{EMBED Paint.Picture }
~~myprog;filltable?T~~

When the document page was Saved As HTML, Word generated the HTML code below:

<HTML>
<HEAD>
<META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=windows-1252">
<META NAME="Generator" CONTENT="Microsoft Word 97">
<TITLE>test</TITLE>
<META NAME="Template" CONTENT="C:\PROGRAM FILES\MSWORKS\OFFICE\html.dot">
</HEAD>
<BODY LINK="#0000ff" VLINK="#800080">

<P>This is a Word example, creating an HTML page.</P>
<P></P>
<P>~~myprog;filltable?T~~</P>
<TABLE CELLSPACING=0 BORDER=0 CELLPADDING=7 WIDTH=732>
<TR><TD WIDTH="25%" VALIGN="TOP" HEIGHT=30>
<P>~~Description$~~</TD>
<TD WIDTH="25%" VALIGN="TOP" HEIGHT=30>
<P>~~Quantity~~</TD>
<TD WIDTH="25%" VALIGN="TOP" HEIGHT=30>
<P>~~Price~~</TD>
<TD WIDTH="25%" VALIGN="TOP" HEIGHT=30>
<P>~~Extended~~</TD>
</TR>
<TR><TD WIDTH="25%" VALIGN="TOP" HEIGHT=30><P></P></TD>
<TD WIDTH="25%" VALIGN="TOP" HEIGHT=30><P></P></TD>
<TD WIDTH="25%" VALIGN="TOP" HEIGHT=30><P></P></TD>
<TD WIDTH="25%" VALIGN="TOP" HEIGHT=30><P></P></TD>

Using Your HTML Editor: Example
You can use any HTML editor to create your web pages and templates. In this example, Microsoft Word
was used to create a document page containing text, a graphic and a table, as follows:

~~Description$~~ ~~Quantity~~ ~~Price~~ ~~Extended~~
43 The ProvideX Web Server Reference, 10/10/01 43

</TR>
</TABLE>

<P> </P></BODY>
</HTML>

For more information on using your particular HTML editor, refer to your HTML editor’s manual.
44 The ProvideX Web Server Reference, 10/10/01 44

*web/util HTML Coding Utility
Utility *web/util

Format:

Basic call Format call "*web/util;entrypoint",required_arguments

Description:

CALL the Webserver’s *web/util program to simplify your coding when you build your HTML pages in
ProvideX applications. The *web/util program contains miscellaneous routines to put various HTML codes
into the %print_fn data channel for you. This is a CALLed program with various entry points and various
ENTER argument lists. See the chart below for a list of Formats for the various entry points, with
arguments and descriptions of the codes that are added to %print_fn.

See also %print_fn, p. 31.

Where:

entrypoint is the entry point (line label) where execution in the *web/util subprogram starts for the
given routine.

required_

argument

is a string or numeric variable name. For each entry point of the utility, there are
different argument lists. See the chart below for details.

To Add to $PRINT_FN: *web/util CALL EntryPoints

1. Begin HTML call "*web/util;BEGIN_HTML",title$

• Adds HTML code starting with the <html><header> tag and going through
to the </header><body> tags.

• Adds title$ value as a page title.

2. Closing Sequence call "*web/util;END_HTML"

• Adds the closing sequences </body></html>.
• Auto-closes any of the following:

• links set byBEGIN_LINK
• paragraphs set by NEW_PARA
• forms set by BEGIN_FORM

3. Begin Link call "*web/util;BEGIN_LINK",url$

Puts in a link and anchor tag for the given url$

4. End Link call "*web/util;END_LINK"

Adds closing the anchor tag

5. Begin Font call "*web/util;BEGIN_FONT",name$,pt_size[,bold]

Adds the begin_new_font tag for your given font name and point size. Bold
is a Boolean value: 0 (zero) if omitted, 1 if included.

6. End Font call "*web/util;END_FONT"

Adds the closing tags to end the font tag created by BEGIN_FONT.

7. Begin Form call "*web/util;BEGIN_FORM",form_name$,url$

• Closes a previous paragraph and form (as necessary), before creating a
new form.

• Creates a new form tag, with the given form name, links by POST to the
given url$
45 The ProvideX Web Server Reference, 10/10/01 45

8. End Form call "*web/util;END_FORM"

 Adds the closing tags for paragraph and form (as necessary).

9. Input Field call "*web/util;INPUT_FIELD",field_name$,size

Creates an input field ("TEXT" type) with field_name$ and width.

10. Input Required call "*web/util;INPUT_REQD_FIELD",field_name$,size

Same as INPUT_FIELD, but puts in validation code for field_name$!=null

11. Input Area call "*web/util;INPUT_AREA",field_name$,cols,lines

Creates an input field ("TEXTAREA" multiline type) with the given number
of columns and rows.

12. Submit Button call "*web/util;SUBMIT_BUTTON",text$

Creates a submit_action button for a form. The text$ is the button’s
description.

13. Reset Button call "*web/util;RESET_BUTTON",text$

Create a reset_action button for a form. The text$ is the button’s
description.

14. New Paragraph call "*web/util;NEW_PARA"

Creates a new paragraph tag (and closes a pre-existing one as necessary).

15. Program List call "*web/util;LIST"

The utility lists itself to the %print_fn channel.

To Add to $PRINT_FN: *web/util CALL EntryPoints
46 The ProvideX Web Server Reference, 10/10/01 46

DireXions Examples (Appendix)

DireXions Examples

Description:

The ProvideX programs and Frontpage HTML web page codes in the examples here were created for the
ProvideX DireXions Technical Conference in March, 1999. The programs and HTML page applications
LISTed in this appendix are illustrations for those who don’t have access to the DireXions CD. For more
information on creating HTML, refer to your HTML editor’s manual (e.g Frontpage, Word, WordPerfect,
etc.).

DireXions attendees can run the Orders Demonstration from the ProvideX 4.10 DireXions CD by launching
it through http://127.0.0.1:4000/orders/. Programs and web pages from the demonstration are
included here as illustrations for those without access to the CD.
47 The ProvideX Web Server Reference, 10/10/01 47

Orders Program 1: home.htm
DireXions Example orders\home.htm

Description:

This is listing of the ProvideX program that redirects the user to the LOGIN page in the DireXions Order
Demonstration.

See also: Orders Web Page 1: login.htm, p. 52

0010 ! home.html - A misdirection
0020 LET MESS1$="Welcome",MESS2$="Please sign on",USERID$="",USERPASSWD$=""
0030 LET HTML_FILE$="orders/login.htm"
0040 RUN "*web/merge"

NOTE: Just because a file has a name that ends in .HTML does not mean that the Web
Server will have to treat it as such. In the above example, the file named HOME.HTML
is, in reality, a ProvideX program which would be RUN.
48 The ProvideX Web Server Reference, 10/10/01 48

Orders Program 2: webord
DireXions Example orders\webord

Description:

This ProvideX program deals with the user LOGIN process. It jumps to the Profile page in the case of a
new user. When a user signs on, a cookie is set so that order pages will identify the user.

0010 ! webord - Web Based Order Status
0020 ! by Gord Davey - ProvideX Technologies
0030 !
0040 LOGON:
0050 LET EXIT$=STP(EXIT$,2),NEWUSER$=STP(NEWUSER$,2),SIGNON$=STP(SIGNON$,2)
0060 LET USERID$=STP(USERID$,2),USERPASSWD$=STP(USERPASSWD$,2)
0070 !
0080 ! The following line happens when they hit the exit button
0090 ! The value of exit$ is > null when they do
0100 ! So, we can set an %exit_code to 301 which is a URL redirection
0110 ! This causes the browser to jump to the new location given.
0120 ! but because its a pvx app, the redirection will expire
0130 ! right away, so the browser will let them come back here later.
0140 !
0150 IF EXIT$>"" THEN LET %EXIT_CODE=301; LET %NEW_LOCATION$="../"; EXIT
0160 !
0170 IF SIGNON$>"" AND (USERID$="" OR USERPASSWD$="") THEN GOTO NOT_ENOUGH_INFO
0180 !
0190 IF NEWUSER$>"" THEN RUN "orders/profile;new_user"
0200 !
0210 VALIDATE_USERID:
0220 LET USERFIL=HFN; OPEN (USERFIL,ERR=USERFILE_NOT_FOUND)"orders/userfil.dat"
0230 READ (USERFIL,KEY=USERID$,ERR=USER_NOF)*,PASSWD$
0240 IF USERPASSWD$<>PASSWD$ THEN GOTO BAD_PASSWD
0250 !
0260 ! user id and passwd are on file
0270 ! Set cookie for 1 Day, so they don't have to enter it anymore
0280 CALL "*web/cookie;set","order-userid",USERID$,"/orders/","+1D","",0
0290 RUN "orders/ordstat"
0300 !
0310 USERFILE_NOT_FOUND:
0320 LET MESS1$="Internal Error",MESS2$="User ID file not available. Please con
0320:tact the webmaster"; GOTO SEND_BACK
0330 !
0340 NOT_ENOUGH_INFO:
0350 LET MESS1$="Invalid",MESS2$="Please enter both User ID and Password"
0360 GOTO SEND_BACK
0370 !
0380 USER_NOF:
0390 LET MESS1$="Invalid",MESS2$="User ID is not correct."
0400 GOTO SEND_BACK
0410 !
0420 BAD_PASSWD:
0430 LET MESS1$="Invalid",MESS2$="Incorrect password."
0440 GOTO SEND_BACK
0450 !
0460 SEND_BACK:
0470 IF USERFIL THEN CLOSE (USERFIL)
0480 LET HTML_FILE$="orders/login.htm"
0490 RUN "*web/merge"
49 The ProvideX Web Server Reference, 10/10/01 49

Orders Program 3: ordstat
DireXions Example orders\ordstat

Description:

This is a listing of the ProvideX program that sets up a simple order status information page in the
DireXions application, based on the UserID retrieved from the cookie. It also illustrates coding to jump
from page to page.

0010 ! ordstat - Order Status Page
0020 !
0030 LET EXIT$=STP(EXIT$,2),GETPROFILE$=STP(GETPROFILE$,2)
0040 IF EXIT$>"" THEN RUN "orders/home.htm"
0050 IF GETPROFILE$>"" THEN RUN "orders/profile;current_user"
0060 !
0070 GOSUB CHECK_COOKIE
0080 IF USERID$="" THEN GOTO USER_NOT_FOUND
0090 LET PROF=HFN; OPEN (PROF,IOL=*)"orders/profile.dat"
0100 READ (PROF,KEY=USERID$,ERR=USER_NOT_FOUND)
0110 !
0120 ! got shipto info, we would look up the orders here
0130 LET HTML_FILE$="orders/ordstat.htm"
0140 RUN "*web/merge"
0150 !
0160 USER_NOT_FOUND:
0170 RUN "orders/home.htm"
0180 !
0190 CHECK_COOKIE:
0200 FOR X=1 TO %COOKIE.RCV
0210 CALL "*web/cookie;get",X,VAR$,VALUE$
0220 IF VAR$="order-userid" THEN LET USERID$=VALUE$
0230 NEXT X
0240 RETURN
50 The ProvideX Web Server Reference, 10/10/01 50

Orders Program 4: profile
DireXions Example orders\profile

Description:

This application submits the Profile page and provides an information Lookup in cases where the user is
jumping to the page from somewhere else. It’s also an example of how to look for a cookie from the user’s
browser and display the user information.

0010 ! profile - Web Based Profile Entry
0020 !
0030 PROFILE_SUBMIT:
0040 LET OK$=STP(OK$,2),CANCEL$=STP(CANCEL$,2)
0050 IF CANCEL$>"" THEN GOTO USER_NOT_FOUND
0060 LET PROF=HFN; OPEN (PROF,IOL=*)"orders/profile.dat"
0070 LET USERFIL=HFN; OPEN (USERFIL)"orders/userfil.dat"
0080 IF PASSWD1$<>PASSWD2$ THEN LET MESS1$="Passwords do NOT match.",HTML_FILE$
0080:="orders/profile.htm"; CLOSE (PROF); CLOSE (USERFIL); RUN "*web/merge"
0090 REMOVE (PROF,KEY=USERID$,ERR=*NEXT)
0100 REMOVE (USERFIL,KEY=USERID$,ERR=*NEXT)
0110 WRITE (PROF)
0120 WRITE (USERFIL,KEY=USERID$)USERID$,PASSWD1$
0130 CLOSE (PROF); CLOSE (USERFIL)
0140 RUN "orders/home.htm"
0150 !
0160 NEW_USER:
0170 LET USERID$="",HTML_FILE$="orders/profile.htm"; RUN "*web/merge"
0180 !
0190 CURRENT_USER:
0200 GOSUB CHECK_COOKIE
0210 IF USERID$="" THEN GOTO USER_NOT_FOUND
0220 LET PROF=HFN; OPEN (PROF,IOL=*)"orders/profile.dat"
0230 LET USERFIL=HFN; OPEN (USERFIL)"orders/userfil.dat"
0240 READ (PROF,KEY=USERID$,ERR=USER_NOT_FOUND)
0250 READ (USERFIL,KEY=USERID$)*,PASSWD$
0260 LET PASSWD1$=PASSWD$,PASSWD2$=PASSWD$
0270 LET HTML_FILE$="orders/profile.htm"
0280 RUN "*web/merge"
0290 !
0300 USER_NOT_FOUND:
0310 RUN "orders/home.htm"
0320 !
0330 CHECK_COOKIE:
0340 FOR X=1 TO %COOKIE.RCV
0350 CALL "*web/cookie;get",X,VAR$,VALUE$
0360 IF VAR$="order-userid" THEN LET USERID$=VALUE$
0370 NEXT X
0380 RETURN
51 The ProvideX Web Server Reference, 10/10/01 51

Orders Web Page 1: login.htm
DireXions Example orders\login.htm

Description:

This is a listing of the HTML for the DireXions login.htm web page application:

<html>

<head>
<title>ProvideX - Order System - Login</title>
</head>

<body background="../images/whttxtr1.jpg">
<div align="left">

<table border="0" cellpadding="0" width="737" cellspacing="0">
 <tr>

<td><img src="../images/pvxbird2.jpg" alt="pvxbird2.jpg (13155 bytes)
"WIDTH="737" HEIGHT="90"></td>

 </tr>
 <tr>

<td height="50" bgcolor="#000080"><p align="center"><big><big><big>On-Line Order System</big></big></big><stro
ng></td>

 </tr>
 <tr>

<td height="25"><p align="center">

<big><big>~~mess1$~~ - </
big>~~mess2$~~</big>
</td>

 </tr>
 <tr>
 <td><form method="POST" action="/orders/webord;logon">
 <div align="center"><center><table border="0" cellpadding="3" width="50%"

cellspacing="1">
 <tr>

<td width="50%" valign="middle" align="right" nowrap><font face
="Arial" size="5">UserID:</td>
<td width="50%" valign="middle" align="left"><input type="text"
name="userid" size="20" value="~~userid$~~"></td>

 </tr>
 <tr>

<td width="50%" valign="middle" align="right" nowrap><font face=
"Arial" size="5">Password:</td>
<td width="50%" valign="middle" align="left"><input type="passwo
rd" name="userpasswd" size="20" value="~~userpasswd$~~"></td>

 </tr>
 <tr>
 <td width="50%" valign="middle" align="right" nowrap> </td>
 <td width="50%" valign="middle" align="left"> </td>
 </tr>
 <tr>

<td width="100%" colspan="2" valign="middle" align="center"><st
rong><input type="submit" value="
Sign On " name="signon" style="font-family:
sans-serif, serif; font-size: 14pt; font-weight: bold"></
strong></td>

 </tr>
52 The ProvideX Web Server Reference, 10/10/01 52

 <tr>
<td width="50%" valign="middle" align="right"><font
face="Arial" size="3"><input type="submit" value=" New User
" name="newuser" style="font-family: sans-serif, serif; font-size:
14pt; font-weight: bold"></td>
<td width="50%" valign="middle" align="left"><font
face="Arial" size="3"><input type="submit" value="
Exit " name="Exit" style="font-family: sans-serif,
serif; font-size: 14pt; font-weight: bold"></td>

 </tr>
 </table>
 </center></div>
 </form>
 </td>
 </tr>
 <tr>
 <td height="25"></td>
 </tr>
 <tr>

<td height="50" bgcolor="#000080"><p align="center"><font color="#80F
FFF" face="Tahoma"><big><big><big>Please Sign-On</big></big></
big></td>

 </tr>
</table>
</div>
<p> </p>
<p> </p>
<p> </p>
<p> </p>
</body>
</html>

53 The ProvideX Web Server Reference, 10/10/01 53

Orders Web Page 2: profile.htm
DireXions Example orders\profile.htm

Description:

The profile.htm web page application illustrates a variety of HTML codes.

<html>

<head>
<title>ProvideX - Order System - Personal Profile</title>
</head>

<body background="../images/whttxtr1.jpg">
<div align="left">

<table border="0" cellpadding="0" width="737" cellspacing="0">
<tr>

<td><img src="../images/pvxbird2.jpg" alt="pvxbird2.jpg (13155 bytes)" WI
DTH="737" HEIGHT="90"></td>

</tr>
<tr>

<td height="50" bgcolor="#000080"><p align="center"><font color="#80FFFF"
face="Tahoma"><big><big><big>Personal Profile</big></big></big></
strong></td>

</tr>
<tr>

<td height="25"><p align="right"><small> </small>
<img src="../images/blueball.gif" alt="blueball.gif (262 bytes)" WIDTH="1
5" HEIGHT="15"> <small>Denotes a Mandatory Field</small></td>

</tr>
<tr>

<td><!--webbot BOT="GeneratedScript" PREVIEW=" " startspan --><script Lang
uage="JavaScript"><!--function FrontPage_Form1_Validator(theForm)

{

if (theForm.UserID.value.length < 4)
{

alert("Please enter at least 4 characters in the \"User ID\" field.");
theForm.UserID.focus();
return (false);

}

if (theForm.UserID.value.length > 10)
{

alert("Please enter at most 10 characters in the \"User ID\" field.");
theForm.UserID.focus();
return (false);

}

var checkOK = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyzƒŠŒŽš
œžŸÀÁÂÃÄÅÆÇÈÉÊËÌÍÎÏÐÑÒÓÔÕÖØÙÚÛÜÝÞßàáâãäåæçèéêëìíîïðñòóôõöøùúûüýþ01234567
89-";
var checkStr = theForm.UserID.value;
var allValid = true;
for (i = 0; i < checkStr.length; i++)
{

54 The ProvideX Web Server Reference, 10/10/01 54

ch = checkStr.charAt(i);
for (j = 0; j < checkOK.length; j++)

if (ch == checkOK.charAt(j))
break;

if (j == checkOK.length)
{

allValid = false;
break;

}
}
if (!allValid)
{

alert("Please enter only letter and digit characters in the \"User ID\"
field.");
theForm.UserID.focus();
return (false);

}

if (theForm.passwd1.value.length < 4)
{

alert("Please enter at least 4 characters in the \"Password\" field.");
theForm.passwd1.focus();
return (false);

}

if (theForm.passwd1.value.length > 10)
{

alert("Please enter at most 10 characters in the \"Password\" field.");
theForm.passwd1.focus();
return (false);

}

var checkOK = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyzƒŠŒŽš
œžŸÀÁÂÃÄÅÆÇÈÉÊËÌÍÎÏÐÑÒÓÔÕÖØÙÚÛÜÝÞßàáâãäåæçèéêëìíîïðñòóôõöøùúûüýþ01234567
89-";
var checkStr = theForm.passwd1.value;
var allValid = true;
for (i = 0; i < checkStr.length; i++)
{

ch = checkStr.charAt(i);
for (j = 0; j < checkOK.length; j++)

if (ch == checkOK.charAt(j))
break;

if (j == checkOK.length)
{

allValid = false;
break;

}
}
if (!allValid)
{

alert("Please enter only letter and digit characters in the \"Password\"
field.");
theForm.passwd1.focus();
return (false);

}

if (theForm.passwd2.value.length < 4)
55 The ProvideX Web Server Reference, 10/10/01 55

{
alert("Please enter at least 4 characters in the \"Confirmation Password\"
field.");
theForm.passwd2.focus();
return (false);

}

if (theForm.passwd2.value.length > 10)
{

alert("Please enter at most 10 characters in the \"Confirmation Password\"
field.");
theForm.passwd2.focus();
return (false);

}

var checkOK = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyzƒŠŒŽš
œžŸÀÁÂÃÄÅÆÇÈÉÊËÌÍÎÏÐÑÒÓÔÕÖØÙÚÛÜÝÞßàáâãäåæçèéêëìíîïðñòóôõöøùúûüýþ01234567
89-";
var checkStr = theForm.passwd2.value;
var allValid = true;
for (i = 0; i < checkStr.length; i++)
{

ch = checkStr.charAt(i);
for (j = 0; j < checkOK.length; j++)

if (ch == checkOK.charAt(j))
break;

if (j == checkOK.length)
{

allValid = false;
break;

}
}
if (!allValid)
{

alert("Please enter only letter and digit characters in the \"Confirmation
Password\" field.");
theForm.passwd2.focus();
return (false);

}

if (theForm.FirstName.value == "")
{

alert("Please enter a value for the \"First Name\" field.");
theForm.FirstName.focus();
return (false);

}

if (theForm.FirstName.value.length < 1)
{

alert("Please enter at least 1 characters in the \"First Name\" field.");
theForm.FirstName.focus();
return (false);

}

if (theForm.LastName.value == "")
{

alert("Please enter a value for the \"Last Name\" field.");
theForm.LastName.focus();
56 The ProvideX Web Server Reference, 10/10/01 56

return (false);
}

if (theForm.LastName.value.length < 1)
{

alert("Please enter at least 1 characters in the \"Last Name\" field.");
theForm.LastName.focus();
return (false);

}

if (theForm.CompName.value == "")
{

alert("Please enter a value for the \"Company Name\" field.");
theForm.CompName.focus();
return (false);

}

if (theForm.CompName.value.length < 1)
{

alert("Please enter at least 1 characters in the \"Company Name\" field.");
theForm.CompName.focus();
return (false);

}

if (theForm.Addr1.value == "")
{

alert("Please enter a value for the \"Address\" field.");
theForm.Addr1.focus();
return (false);

}

if (theForm.Addr1.value.length < 1)
{

alert("Please enter at least 1 characters in the \"Address\" field.");
theForm.Addr1.focus();
return (false);

}

if (theForm.City.value == "")
{

alert("Please enter a value for the \"City\" field.");
theForm.City.focus();
return (false);

}

if (theForm.City.value.length < 1)
{

alert("Please enter at least 1 characters in the \"City\" field.");
theForm.City.focus();
return (false);

}

if (theForm.Province.value.length < 1)
{

alert("Please enter at least 1 characters in the \"Province\" field.");
theForm.Province.focus();
return (false);

}

57 The ProvideX Web Server Reference, 10/10/01 57

if (theForm.Country.value == "")
{

alert("Please enter a value for the \"Country\" field.");
theForm.Country.focus();
return (false);

}

if (theForm.Country.value.length < 1)
{

alert("Please enter at least 1 characters in the \"Country\" field.");
theForm.Country.focus();
return (false);

}

if (theForm.Telephone.value == "")
{

alert("Please enter a value for the \"Telephone Number\" field.");
theForm.Telephone.focus();
return (false);

}

if (theForm.Telephone.value.length < 7)
{

alert("Please enter at least 7 characters in the \"Telephone Number\"field
.");
theForm.Telephone.focus();
return (false);

}

var checkOK = "0123456789-+-() \t\r\n\f";
var checkStr = theForm.Telephone.value;
var allValid = true;
for (i = 0; i < checkStr.length; i++)
{

ch = checkStr.charAt(i);
for (j = 0; j < checkOK.length; j++)

if (ch == checkOK.charAt(j))
break;

if (j == checkOK.length)
{

allValid = false;
break;

}
}
if (!allValid)
{

alert("Please enter only digit, whitespace and \"+-()\" characters in the
\"Telephone Number\" field.");
theForm.Telephone.focus();
return (false);

}

var checkOK = "0123456789-+-() \t\r\n\f";
var checkStr = theForm.Fax.value;
var allValid = true;
for (i = 0; i < checkStr.length; i++)
{

58 The ProvideX Web Server Reference, 10/10/01 58

ch = checkStr.charAt(i);
for (j = 0; j < checkOK.length; j++)

if (ch == checkOK.charAt(j))
break;

if (j == checkOK.length)
{

allValid = false;
break;

}
}
if (!allValid)
{

alert("Please enter only digit, whitespace and \"+-()\" characters in the
\"Fax Number\" field.");
theForm.Fax.focus();
return (false);

}

if (theForm.Email.value == "")
{

alert("Please enter a value for the \"E-Mail Address\" field.");
theForm.Email.focus();
return (false);

}

if (theForm.Email.value.length < 3)
{

alert("Please enter at least 3 characters in the \"E-Mail Address\" field
.");
theForm.Email.focus();
return (false);

}

var checkOK = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyzƒŠŒŽš
œžŸÀÁÂÃÄÅÆÇÈÉÊËÌÍÎÏÐÑÒÓÔÕÖØÙÚÛÜÝÞßàáâãäåæçèéêëìíîïðñòóôõöøùúûüýþ01234567
89-.@-_,";
var checkStr = theForm.Email.value;
var allValid = true;
for (i = 0; i < checkStr.length; i++)
{

ch = checkStr.charAt(i);
for (j = 0; j < checkOK.length; j++)

if (ch == checkOK.charAt(j))
break;

if (j == checkOK.length)
{

allValid = false;
break;

}
}
if (!allValid)
{

alert("Please enter only letter, digit and \".@-_,\" characters in the \"E-
Mail Address\" field.");
theForm.Email.focus();
return (false);

}
return (true);
59 The ProvideX Web Server Reference, 10/10/01 59

}
//--></script><!--webbot BOT="GeneratedScript" endspan --><form method="POST"
action="/orders/profile;profile_submit" onsubmit="return FrontPage_Form1_Vali
dator(this)" name="FrontPage_Form1">

<div align="center"><center><table border="0" cellpadding="
3" width="100%" cellspacing="1">

<tr>
<td width="100%" valign="middle" align="center" nowrap colspan="
4"><big><big>~~mess1$~~
</big></big> <big>- ~~mess2$~~</big></td>

</tr>
<tr>

<td width="15%" valign="middle" align="right" nowrap></td>
<td width="85%" valign="middle" align="left" colspan="3" nowrap>
</td>

</tr>
<tr>

<td width="15%" valign="middle" align="right" nowrap><font
face="Arial">User ID:</td>
<td width="85%" valign="middle" align="left" colspan="3" nowrap><!-
-webbot bot="Validation" S-Display-Name="User ID" S-Data-Type=
"String" B-Allow-Letters="TRUE" B-Allow-Digits="TRUE" I-Minimum-
Length="4" I-Maximum-Length="10" --><input type="text" name=
"UserID" size="20" tabindex="1" maxlength="10" value="~~userid$~~">
<imgsrc="../images/blueball.gif" alt="blue
ball.gif (262 bytes)" WIDTH="15" HEIGHT="15"></td>

</tr>
<tr>

<td width="15%" valign="middle" align="right" nowrap><font
face="Arial">Password:</td>
<td width="85%" valign="middle" align="left" colspan="3" nowrap><!-
-webbot bot="Validation" S-Display-Name="Password" S-Data-Type=
"String" B-Allow-Letters="TRUE" B-Allow-Digits="TRUE" I-Minimum-
Length="4" I-Maximum-Length="10" --><input type="password" name=
"passwd1" size="20" tabindex="1" value="~~passwd1$~~" maxlength=
"10"> <img src="../images/blueball.gif" alt=
"blueball.gif (262 bytes)" WIDTH="15" HEIGHT="15"></td>

</tr>
<tr>

<td width="15%" valign="middle" align="right" nowrap><font
face="Arial">ConfirmPassword:</td>
<td width="85%" valign="middle" align="left" colspan="3" nowrap><!-
-webbot bot="Validation" S-Display-Name="Confirmation Password" S-
Data-Type="String" B-Allow-Letters="TRUE" B-Allow-Digits="TRUE" I-
Minimum-Length="4" I-Maximum-Length="10" --><input type="password"
name="passwd2" size="20" tabindex="1" value="~~passwd2$~~"
maxlength="10"> <img src="../images/blueball.
gif" alt="blueball.gif (262 bytes)" WIDTH="15" HEIGHT="15">
</td>

</tr>
<tr>

<td width="15%" valign="middle" align="right" nowrap></td>
<td width="85%" valign="middle" align="left" colspan="3" nowrap>
</td>

</tr>
<tr>

<td width="15%" valign="middle" align="right" nowrap><font
face="Arial">FirstName:</td>
60 The ProvideX Web Server Reference, 10/10/01 60

<td width="85%" valign="middle" align="left" colspan="3" nowrap><!-
-webbot bot="Validation" S-Display-Name="First Name" B-Value-
Required="TRUE" I-Minimum-Length="1" --><input type="text" name=
"FirstName" size="20" tabindex="2" value="~~firstname$~~"><font
face="Tahoma"> <img src="../images/blueball.gif" alt="blueball.gif
(262 bytes)" WIDTH="15" HEIGHT="15"></td>

</tr>
<tr>

<td width="15%" valign="middle" align="right" nowrap><font
face="Arial">Last Name:</td
<td width="85%" valign="middle" align="left" colspan="3" nowrap><!-
-webbot bot="Validation" S-Display-Name="Last Name" B-Value-
Required="TRUE" I-Minimum-Length="1" --><input type="text" name=
"LastName" size="20" tabindex="3" value="~~lastname$~~"><font
face="Tahoma"> <img src="../images/blueball.gif" alt="blueball.gif
(262 bytes)" WIDTH="15" HEIGHT="15"></td>

</tr>
<tr>

<td width="15%" valign="middle" align="right" nowrap height="20">
</td>
<td width="85%" valign="middle" align="left" colspan="3" height=
"20" nowrap></td>

</tr>
<tr>

<td width="15%" valign="middle" align="right" nowrap><font
face="Arial">CompanyName:</td>
<td width="85%" valign="middle" align="left" colspan="3" nowrap><!-
-webbot bot="Validation" S-Display-Name="Company Name" B-Value-
Required="TRUE" I-Minimum-Length="1" --><input type="text" name=
"CompName" size="50" tabindex="4" value="~~compname$~~"><font face=
"Tahoma"> <img src="../images/blueball.gif" alt="blueball.gif (262
bytes)" WIDTH="15" HEIGHT="15"></td>

</tr>
<tr>

<td width="15%" valign="middle" align="right" nowrap><font
face="Arial">Address:</td>
<td width="85%" valign="middle" align="left" colspan="3" nowrap><!-
-webbot bot="Validation" S-Display-Name="Address" B-Value-Required=
"TRUE" I-Minimum-Length="1" --><input type="text" name="Addr1"
size="50" tabindex="5" value="~~addr1$~~">
<img src="../images/blueball.gif" alt="blueball.gif (262 bytes)"
WIDTH="15" HEIGHT="15"></td>

</tr>
<tr>

<td width="15%" valign="middle" align="right" nowrap></td>
<td width="85%" valign="middle" align="left" colspan="3" nowrap>
<input type="text" name="Addr2" size="50" tabindex="6" value="~~add
r2$~~"></td>

</tr>
<tr>

<td width="15%" valign="middle" align="right" nowrap></td>
<td width="85%" valign="middle" align="left" colspan="3" nowrap>
<input type="text" name="Addr3" size="50" tabindex="7" value=
"~~addr3$~~"></td>

</tr>
<tr>

<td width="15%" valign="middle" align="right" nowrap><font
face="Arial">City:</td>

<td width="34%" valign="middle" align="left" nowrap><!--webbot bot=
"Validation" S-Display-Name="City" B-Value-Required="TRUE" I-
Minimum-Length="1" --><input type="text" name="City" size="20"
tabindex="8" value="~~city$~~"> <img src="../
images/blueball.gif" alt="blueball.gif (262 bytes)" WIDTH="15"
HEIGHT="15"></td>
<td width="17%" valign="middle" align="right" nowrap><font
face="Arial">State/Prov:</td>
<td width="34%" valign="middle" align="left" nowrap><!--webbot
bot="Validation" I-Minimum-Length="1" --><input type="text" name=
"Province" size="10" tabindex="9" value="~~province$~~"></td>

</tr>
<tr>

<td width="15%" valign="middle" align="right" nowrap><font
face="Arial">Country:</td>
<td width="34%" valign="middle" align="left" nowrap><!--webbot bot=
"Validation" S-Display-Name="Country" B-Value-Required="TRUE" I-
Minimum-Length="1" --><input type="text" name="Country" size="20"
tabindex="10" value="~~country$~~"> <img src=
"../images/blueball.gif" alt="blueball.gif (262 bytes)" WIDTH="15"
HEIGHT="15"></td>
<td width="17%" valign="middle" align="right" nowrap><font
face="Arial">Zip/Postal:</td>
<td width="34%" valign="middle" align="left" nowrap><input type=
"text" name="PostalCode" size="10" tabindex="11" value="~~postal
code$~~"></td>

</tr>
<tr>

<td width="15%" valign="middle" align="right" nowrap></td>
<td width="85%" valign="middle" align="left" colspan="3" nowrap>
</td>

</tr>
<tr>

<td width="15%" valign="middle" align="right" nowrap><font
face="Arial">Tel:</td>
<td width="85%" valign="middle" align="left" colspan="3" nowrap><!-
-webbot bot="Validation" S-Display-Name="Telephone Number" S-Data-
Type="String" B-Allow-Digits="TRUE" B-Allow-WhiteSpace="TRUE"
S-Allow-Other-Chars="+-()" B-Value-Required="TRUE" I-Minimum-
Length="7" --><input type="text" name="Telephone" size="30"
tabindex="12" value="~~telephone$~~"> <img src=
"../images/blueball.gif" alt="blueball.gif (262 bytes)" WIDTH="15"
HEIGHT="15"></td>

</tr>
<tr>

<td width="15%" valign="middle" align="right" nowrap><font
face="Arial">Fax:</td>
<td width="85%" valign="middle" align="left" colspan="3" nowrap><!-
-webbot bot="Validation" S-Display-Name="Fax Number" S-Data-Type=
"String" B-Allow-Digits="TRUE" B-Allow-WhiteSpace="TRUE" S-Allow-
Other-Chars="+-()" --><input type="text" name="Fax" size="30" tab
index="13" value="~~fax$~~"></td>

</tr>
<tr>

<td width="15%" valign="middle" align="right" nowrap><font
face="Arial">E-Mail:</td>
<td width="85%" valign="middle" align="left" colspan="3" nowrap><!-
-webbot bot="Validation" S-Display-Name="E-Mail Address" S-Data-
62 The ProvideX Web Server Reference, 10/10/01 62

Type="String" B-Allow-Letters="TRUE" B-Allow-Digits="TRUE" S-Allow-
Other-Chars=".@-_," B-Value-Required="TRUE" I-Minimum-Length="3"
--><input type="text" name="Email" size="40" tabindex="14" value=
"~~email$~~"> <img src="../images/blueball.gif"
alt="blueball.gif (262 bytes)" WIDTH="15" HEIGHT="15"></td>

</tr>
<tr>

<td width="100%" colspan="4" valign="middle" align="center" nowrap>
</td>

</tr>
<tr>

<td width="50%" valign="middle" align="right"><font face=
"Arial" size="3"><input type="submit" value=" OK "
name="ok" style="font-family: sans-serif, serif; font-size: 14pt;
font-weight: bold" tabindex="15"></td>
<td width="50%" valign="middle" align="left" colspan="3">
<input type="reset" value=" Reset
" name="Reset" style="font-family: sans-serif, serif; font-size:
14pt; font-weight: bold" tabindex="16"></td>

</tr>
</table>
</center></div>

</form>
</td>

</tr>
<tr>

<td height="25"></td>
</tr>
<tr>

<td height="50" bgcolor="#000080"><p align="center"><small><font color=
"#80FFFF" face="Tahoma">This information will be kept confidential.
</small></td>

</tr>
</table>
</div>
</body>
</html>
63 The ProvideX Web Server Reference, 10/10/01 63

Orders Web Page 3: ordstat.htm
DireXions Example orders\ordstat.htm

Description:

This is a listing of the HTML for the ordstat.htm web page:

<body background="../images/whttxtr1.jpg">
<div align="left">

<table border="0" cellpadding="0" width="737" cellspacing="0">
<tr>

<td><img src="../images/pvxbird2.jpg" alt="pvxbird2.jpg (13155 bytes)"
WIDTH="737" HEIGHT="90"></td>

</tr>
<tr>

<td height="50" bgcolor="#000080"><p align="center"><big><big>
<big>On-Line Order System
</big></big></big></td>

 </tr>
</table>
</div>

<form method="POST" action="ordstat">
<p><input type="submit" value=" Exit " name="Exit"><input type=
"submit" value="Change Profile" name="getprofile"></p>

</form>

<p><big>Welcome:</big></
strong>~~firstname$~~ ~~lastname$~~</p>

<p><big>Your Current ShipTo address is:</big></
strong>

 ~~compname$~~

 ~~addr1$~~

 ~~addr2$~~

 ~~addr3$~~

 ~~city$~~, ~~province$~~, ~~country$~~
~~postalcode$~~</p>

<p>Number of Orders on File: ~~numorders~~</p>
<div align="left">

<table border="1" cellpadding="3" width="737">
<tr>

<td width="16%" align="center" bgcolor="#C0C0C0"><font face=
"Tahoma" color="#000000">Order Number</td>
<td width="16%" align="center" bgcolor="#C0C0C0"><font face=

Example
<html>

<head>
<title>Order Status Page</title>
</head>
64 The ProvideX Web Server Reference, 10/10/01 64

"Tahoma" color="#000000">Product #</td>
<td width="17%" align="center" bgcolor="#C0C0C0"><font face=
"Tahoma" color="#000000">Qty</td>
<td width="17%" align="center" bgcolor="#C0C0C0"><font face=
"Tahoma" color="#000000">Cost</td>
<td width="17%" align="center" bgcolor="#C0C0C0"><font face=
"Tahoma" color="#000000">Status</td>

</tr>
<tr>

<td width="16%" align="center"> </td>
<td width="16%" align="center"> </td>
<td width="17%" align="center"> </td>
<td width="17%" align="center"> </td>
<td width="17%" align="center"> </td>

</tr>
</table>
</div>
</body>
</html>
65 The ProvideX Web Server Reference, 10/10/01 65

	Glossary of Common Terms
	Conventions

	General Information
	Description
	Applications
	Components of the Web Server
	The Base Launcher (The Web Server Application)
	Port Monitors
	Task Handlers
	About Timeouts
	Your Environment

	To Set Up the ProvideX Web Server
	Environment
	Installation Notes
	For Windows Installations, Create Two Icons
	For Automatic Startup

	To Configure the Web Server
	Web Server Configuration Icon
	Status Control
	Menu Bar: About WebServer
	To Edit Configuration Details
	Server Basics Configuration
	Port Style Configuration
	Task Handlers Configuration
	Details Configuration Buttons

	Troubleshooting
	Error Conditions
	PVX Web and Debug Mode

	Mime Configuration
	Mime Type
	Serving Simple Mime Type Requests

	Client/Browser Requests
	Request Methods
	Examples
	URL Request to GET a File
	Requests: Examples

	URL Request to Run a ProvideX Program
	Your Web Application Must "Stand-Alone"
	Entry Points
	Variables as Arguments
	ProvideX Web Server Variables:
	Command Line Arguments

	About Your ProvideX Programs
	Output from Your ProvideX Program
	No Direct Interaction with User
	Standard Output Channel
	Limits on Output:
	Example: Basic Raw Text Output
	Example: Basic HTML Output
	Example: Java Script

	ProvideX Web Server Variables
	ProvideX Web Server Utilities
	*web/base64 To Encrypt or Decode Data
	Notes: On Encoding and Decoding Files
	Base64 Error Messages

	*web/cookie To Set, Send and Retrieve Cookies
	Format 1: call "*web/cookie;GET",number,name$,data$
	Format 2: call "*web/cookie;SET",name$,data$,path$,expires$,domain$
	The "expires$" Parameter

	*web/mail To Send Mail to a Local SMTP Server
	*web/merge To Merge Dynamic Data with HTML Templates
	Table Suffixes
	The ?CT (Colour Table) Suffix
	The ?JT (Jump Table) Suffix
	Basic HTML Template Creation: Example
	Basic Template Filling: Example
	Using Your HTML Editor: Example

	*web/util HTML Coding Utility

	DireXions Examples (Appendix)
	Orders Program 1: home.htm
	Orders Program 2: webord
	Orders Program 3: ordstat
	Orders Program 4: profile
	Orders Web Page 1: login.htm
	Orders Web Page 2: profile.htm
	Orders Web Page 3: ordstat.htm
	Example

